FULL PAPER
4, Biochemistry and Binding: Activation of Small Molecules, Ac-
ademic Press, 2000.
with a 25 m CBP1–S25 (0.32 mm i.d., 0.5 m coating) capillary col-
umn. UV/Vis spectra were recorded with a 160 Shimadzu spectro-
photometer. All chemicals were purchased from Merck or Fluka.
The free base porphyrins: TPPH2,[17] T(4-OMeP)PH2,[17] T(4-
NO2P)PH2,[18] TDCPPH2,[19] and TPFPP[20] were prepared and
purified by the methods reported previously. The Mn(porphyrin)-
OAc complexes were obtained by using Mn(OAc)2·4H2O according
to the procedure of Adler et al.[21] Mn(TPFPP)OAc was synthe-
sized in a manner similar to that described by Kadish et al.[22]
[4]
a) D. J. Cole-Hamilton, Science 2003, 299, 1702–1706; b) N. E.
Leadbeater, M. Marco, Chem. Rev. 2002, 102, 3217–3273; c)
Q.-H. Fan, Y.-M. Li, A. S. C. Chan, Chem. Rev. 2002, 1, 3385–
3466; d) C. E. Song, S.-G. Lee, Chem. Rev. 2002, 102, 3495–
3466; e) A. Akelah, D. C. Sherrington, Chem. Rev. 1981, 81,
557–587; f) D. C. Bailey, S. H. Langer, Chem. Rev. 1981, 81,
109–148; g) C. A. McNamara, M. J. Dixon, M. Bradley, Chem.
Rev. 2002, 102, 3275–3299.
[5]
[6]
E. Brule, Y. R. De Miguel, Org. Biomol. Chem. 2006, 4, 599–
609.
Synthesis of Colloidal Mn(TPP)OAc Nanoparticles: The colloidal
Mn(TPP)OAc nanoparticles were prepared according to the host–
guest procedure reported by Drain et al.[8h,1,1j] but with the modifi-
cation of the host solvent. We replaced DMF and THF with eth-
anol as a safe host solvent. Mn(TPP)OAc nanoparticles was pre-
pared in 10 mL vials by adding deionized water (5 mL, pH 6.5–7)
to a mixture of triethylene glycol monomethyl ether (0.20 mL) as
stabilizer and a stock solution of Mn(TPP)OAc in ethanol (1.8 mm,
0.40 mL). The solution was sonicated during the addition and was
sonicated for an additional 15 min. The prepared nanoparticles
were stable for more than one month and were refrigerated at ca.
4 °C.
a) C. D. Nunes, A. A. Valente, M. Pillinger, A. C. Fernandes,
C. C. Romão, I. Rocha, I. S. Gonçalves, J. Mater. Chem. 2002,
12, 1735–1742; b) M. Jia, A. Seifert, W. R. Thiel, Chem. Mater.
2003, 15, 2174–2180; c) A. Sakthivel, J. Zhao, G. R. Sieber, M.
Hanzlik, A. S. T. Chiang, F. E. Kühn, Appl. Catal. A 2005, 281,
267–273.
a) R. G. Chaudhuri, S. Paria, Chem. Rev. 2012, 112, 2373–
2433; b) L. Guerrini, D. Graham, Chem. Soc. Rev. 2012, 41,
7085–7107; c) S. E. Lohse, C. J. Murphy, J. Am. Chem. Soc.
2012, 134, 15607–15620; d) D. J. de Aberasturi, J.-M. Montene-
gro, I. R. de Larramendi, T. Rojo, T. A. Klar, R. Alvarez-
Puebla, L. M. Liz-Marzán, W. J. Parak, Chem. Mater. 2012, 24,
738–745; e) A. Z. Abbasi, F. Amin, T. Niebling, S. Friede, M.
Ochs, S. Carregal-Romero, J.-M. Montenegro, P. R. Gil, W.
Heimbrodt, W. J. Parak, ACS Nano 2011, 5, 21–25; f) J. Ramos,
A. Imaz, J. Callejas-Fernández, L. Barbosa-Barros, J. Estelrich,
M. Quesada-Pérez, J. Forcada, Soft Matter 2011, 7, 5067–5082;
g) A. Schatz, O. Reiser, W. J. Stark, Chem. Eur. J. 2010, 16,
8950–8967; h) D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem.
2005, 117, 8062; Angew. Chem. Int. Ed. 2005, 44, 7852–7872.
a) S. Mandal, S. Bhattacharyya, V. Borovkov, A. Patra, J. Phys.
Chem. C 2012, 116, 11401–11407; b) M. Shrestha, L. Si, Ch.-
W. Chang, H. He, A. Sykes, Ch.-Y. Lin, E. Wei-Guang Diau,
J. Phys. Chem. C 2012, 116, 10451–10460; c) L. Maqueira, A.
Iribarren, A. C. Valdés, C. P. de Meloc, C. G. dos Santos, J.
Porphyrins Phthalocyanines 2012, 16, 267–272; d) A. Aggarwal,
S. Singh, C. M. Drain, J. Porphyrins Phthalocyanines 2011, 15,
1258–1264; e) H. Yao, H. Sasahara, K. Kimura, Chem. Mater.
2011, 23, 913–922; f) A. Aggarwal, M. Qureshy, J. Johnson,
J. D. Batteas, C. M. Drain, D. Samaroo, J. Porphyrins Phthalo-
cyanines 2011, 15, 338–349; g) K. Cho, W. D. Kerber, S. R. Lee,
A. Wan, J. D. Batteas, D. P. Goldberg, Inorg. Chem. 2010, 49,
8465–8473; h) G. Smeureanu, A. Aggarwal, C. E. Soll, J. Ari-
jeloye, E. Malave, C. M. Drain, Chem. Eur. J. 2009, 15, 12133–
12140; i) C. M. Drain, G. Smeureanu, S. Patel, X. Gong, J.
Garno, J. Arijeloye, New J. Chem. 2006, 30, 1834–1843; j) X.
Gong, T. Milic, C. Xu, J. D. Batteas, C. M. Drain, J. Am.
Chem. Soc. 2002, 124, 14290–14291.
a) C. J. Li, T. K. Chan, Organic Reactions in Aqueous Media,
John Wiley & Son, New York, 1997; b) P. A. Grieco, Organic
Synthesis in Water, Blackie Academic and Professional, Lon-
don, 1998; c) N. Parikh, D. Kumar, S. Raha Roy, A. K. Chak-
raborti, Chem. Commun. 2011, 47, 1797–1799; d) G. Sharma,
R. Kumar, A. K. Chakraborti, Tetrahedron Lett. 2008, 49,
4269–4271; e) A. K. Chakraborti, S. Rudrawar, K. B. Jadhav,
G. Kaur, S. V. Chankeshwara, Green Chem. 2007, 9, 1335–1340;
f) S. V. Chankeshwara, A. K. Chakraborti, Org. Lett. 2006, 8,
3259–3262; g) G. L. Khatik, R. Kumar, A. K. Chakraborti,
Org. Lett. 2006, 8, 2433–2436.
[7]
General Procedure for the Oxygenation of Hydrocarbons by
PhI(OAc)2 Catalyzed by Mn (TPP)OAc Nanoparticles: To a mix-
ture of olefin or saturated hydrocarbon (0.1 mmol) in H2O/EtOH
(13:1, 3 mL) containing colloidal Mn(TPP)OAc nanoparticles
(4.0ϫ10–4 mmol) was added PhI(OAc)2 (0.20 mmol, 0.065 g) in the
presence of imidazole (7.6ϫ10–3 mmol). The reaction mixture was
stirred at 40 °C under air. After completion of the reaction, the
ethanol was removed from the aqueous mixture. The reduced form
of the oxidant was precipitated by cooling the mixture, and the
colloidal Mn(TPP)OAc was isolated by centrifugation. The aque-
ous mixture was then washed with ethyl acetate (3ϫ2.0 mL), the
organic phase was separated, and the solvent was evaporated to
give the desired products with high purity. For incomplete reac-
tions, the pure product was obtained after chromatographic purifi-
cation.
[8]
General Procedure for the Determination of TONs of Mn(TPP)OAc
Nanoparticles: To a mixture of cyclooctene (0.3 mmol) and imid-
azole (7.6ϫ10–3 mmol) in a colloidal solution of Mn(TPP)OAc
nanoparticles (4.0ϫ10–4 mmol, 3 mL) was added PhI(OAc)2
(0.16 g, 0.5 mmol). The reaction mixture was stirred at 40 °C for
24 h under air.
General Procedure for the Determination of TONs of Solvent-Dis-
solved Mn(TPP)OAc: PhI(OAc)2 (0.5 mmol) was added to a solu-
tion of ethanol or acetonitrile (3 mL) containing cyclooctene
(0.3 mmol), imidazole (7.60ϫ10–3 mmol), and a stock solution of
Mn(TPP)OAc (1.8 mm, 0.20 mL). The reaction mixture was stirred
at 40 °C for 24 h under air.
[9]
Acknowledgments
Support for this work by the Research Council of the University
of Birjand is highly appreciated.
[10]
a) D. Mohajer, A. Rezaeifard, Tetrahedron Lett. 2002, 43,
1881–1884; b) N. Iranpoor, D. Mohajer, A. R. Rezaeifard, Tet-
rahedron Lett. 2004, 45, 3811–3815; c) A. Rezaeifard, M.
Jafarpour, G. Kardan Moghaddam, F. Amini, Bioorg. Med.
Chem. 2007, 15, 3097–3101; d) A. Rezaeifard, M. Jafarpour, S.
Rayati, R. Shariati, Dyes Pigm. 2009, 80, 80–85; e) A. Rezaei-
fard, M. Jafarpour, M. A. Nasseri, R. Haddad, Helv. Chim.
Acta 2010, 93, 711–717; f) A. Rezaeifard, M. Jafarpour, H.
Raissi, E. Ghiamati, A. Tootoonchi, Polyhedron 2011, 30, 592–
[1] J.-E. Backvall, Modern Oxidation Methods, Wiley-VCH,
Weinheim, Germany, 2004.
[2] M. Beller, C. Bolm, Transition Metals for Organic Synthesis
Wiley-VCH, Weinheim, Germany, 2004.
[3] a) B. Meunier, Biomimetic Oxidation Mediated by Metal Com-
plexes, Imperial College Press, London, 2000; b) K. M. Kadish,
K. M. Smith, R. Guilard (Eds.), The Porphyrin Handbook, vol.
Eur. J. Inorg. Chem. 2013, 2657–2664
2663
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim