RSC Advances
Paper
dichloromethane, dried in the vacuum at 60 ꢀC for 12 h and
reused for the subsequent cycles. The reused catalyst exhibited
a negligible decrease in the catalytic activity and epoxide
selectivity in three consecutive runs (shown in Fig. 7). To test if
copper is leaching out of the catalyst in liquid phase reaction;
the reaction mixture was hot ltered out at the end of the
reaction and subjected to inductively coupled plasma analysis
techniques. The result suggested almost no detectable copper
metal ions in the ltrate solution.
6 D. Saha, T. Maity, T. Dey and S. Koner, Polyhedron, 2012, 35,
55–61.
7 M. Salavati-Niasari, E. Esmaeili, H. Seyghalkar and
M. Bazarganipour, Inorg. Chim. Acta, 2011, 375, 11–19.
8 S. M. Islam, A. S. Roy, P. Mondal, S. Paul and N. Salam, Inorg.
Chem. Commun., 2012, 24, 170–176.
9 B. Bahramian, V. Mirkhani, M. Moghadam and
S. Tangestaninejad, Appl. Catal., A, 2006, 301, 169–175.
10 Y. Yang, Y. Zhang, S. Hao and Q. Kan, Chem. Eng. J., 2011,
171, 1356–1366.
Based on our experimental results and other related litera-
ture.39,40 A reasonable reaction mechanism for epoxidation of 11 P. Wang, Z. Dong, Y. Lei, Y. Du, H. Li, H. Yang, Y. Nie and
styrene with TBHP over Cu-NH2-KIT-6 catalyst (LCuII) has been
postulated in Scheme 2. In the rst step, LCuII was coordinated 12 S. Jana, S. Bhunia, B. Dutta and S. Koner, Appl. Catal., A,
with TBHP to form an active copper(III)-peroxo species I. Then, 2011, 392, 225–232.
the activated oxygen of I consecutively interacted with C]C of 13 A. Sakthivel, W. Sun, G. Raudaschl-Sieber, A. S. T. Chiang,
J. Ma, J. Porous Mater., 2012, 20, 277–284.
¨
styrene molecule to form cyclic intermediate III. Finally, III
subsequently released to the epoxide, simultaneously accom-
M. Hanzlik and F. E. Kuhn, Catal. Commun., 2006, 7, 302–
307.
panied with the regeneration of copper(II) catalyst. The forma- 14 A. R. Silva, K. Wilson, J. H. Clark and C. Freire, Microporous
tion of benzaldehyde and benzoic acid may be caused by deep
oxidation of TBHP.
Mesoporous Mater., 2006, 91, 128–138.
15 Y. Xia and R. Mokaya, J. Phys. Chem. B, 2003, 107, 6954–6960.
16 S. A. El-Say, T. Hanaoka and F. Mizukami, Adv. Mater.,
2005, 17, 47–53.
17 F. Kleitz, S. H. Choi and R. Ryoo, Chem. Commun., 2003,
2136–2137.
Conclusions
Novel heterogeneous catalysts have been synthesized by cova-
lently anchored various transition metal (Fe2+, Co2+, Ni2+, Cu2+ 18 A. Vinu, N. Gokulakrishnan, V. V. Balasubramanian, S. Alam,
or VO2+) Schiff complexes onto amine functionalized KIT-6. The
M. P. Kapoor, K. Ariga and T. Mori, Chemistry, 2008, 14,
11529–11538.
characterization results demonstrate that the pore structure of
KIT-6 remain intact aer multiple synthetic procedures. In 19 H. Oveisi, C. Anand, A. Mano, S. S. Al-Deyab, P. Kalita,
addition, a detail research was carried out to optimize the
reaction conditions of styrene epoxidation over Cu-NH2-KIT-6.
A. Beitollahi and A. Vinu, J. Mater. Chem., 2010, 20, 10120–
10129.
Compared with copper(II) complex graed onto other supports 20 Y. Yang, S. Hao, Y. Zhang and Q. Kan, Solid State Sci., 2011,
(e.g. zeolite Y, MCM-41, MSN and MS) and different metal (e.g. 13, 1938–1942.
Fe2+, Co2+, Ni2+, or VO2+) Schiff complexes graed onto KIT-6, 21 S. Jana, B. Dutta, R. Bera and S. Koner, Langmuir, 2007, 23,
Cu-NH2-KIT-6 exhibits excellent catalytic performance such as
2492–2496.
high conversion, excellent epoxide selectivity, high TOF and 22 D. Tang, W. Zhang, Y. Zhang, Z. A. Qiao, Y. Liu and Q. Huo,
good recyclability due to its unique pore structure of KIT-6 and J. Colloid Interface Sci., 2011, 356, 262–266.
efficient synergistic effect between Cu(II) Schiff and the KIT-6 23 D.-H. Choi and R. Ryoo, J. Mater. Chem., 2010, 20, 5544–
support.
5550.
24 Y. Yang, J. Guan, P. Qiu and Q. Kan, Appl. Surf. Sci., 2010,
256, 3346–3351.
25 H. Wang, J. Huang, S. Wu, C. Xu, L. Xing, L. Xu and Q. Kan,
Mater. Lett., 2006, 60, 2662–2665.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21303069), Jilin province (201105006), 26 S. J. J. Titinchi and H. S. Abbo, Catal. Today, 2013, 204, 114–
and Jilin University (450060445017).
124.
27 N. Malumbazo and S. F. Mapolie, J. Mol. Catal. A: Chem.,
2009, 312, 70–77.
28 X. Wang, Y. Tseng, J. Chan and S. Cheng, J. Catal., 2005, 233,
266–275.
29 A. Di Giuseppe, C. Di Nicola, R. Pettinari, I. Ferino,
D. Meloni, M. Passacantando and M. Crucianelli, Catal.
Sci. Technol., 2013, 3, 1972–1984.
30 D. Zhang, A. Duan, Z. Zhao and C. Xu, J. Catal., 2010, 274,
273–286.
Notes and references
1 L. Ma, F. Su, W. Guo, S. Zhang, Y. Guo and J. Hu, Microporous
Mesoporous Mater., 2013, 169, 16–24.
2 X. H. Lu, Q. H. Xia, H. J. Zhan, H. X. Yuan, C. P. Ye, K. X. Su
and G. Xu, J. Mol. Catal. A: Chem., 2006, 250, 62–69.
3 X. Lu and Y. Yuan, Appl. Catal., A, 2009, 365, 180–186.
4 S. Tangestaninejad, M. Moghadam, V. Mirkhani,
I. Mohammadpoorbaltork and K. Ghani, Catal. Commun., 31 S. Alam, C. Anand, S. M. Zaidi, T. S. Naidu, S. S. Al-Deyab and
2009, 10, 853–858. A. Vinu, Chem.–Asian J., 2011, 6, 834–841.
5 J. Sebastian, K. Jinka and R. Jasra, J. Catal., 2006, 244, 208– 32 C. Yuan, Z. Huang and J. Chen, Catal. Commun., 2012, 24,
218.
56–60.
2316 | RSC Adv., 2014, 4, 2310–2317
This journal is © The Royal Society of Chemistry 2014