Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
6
7
F. Shi, A. M. Coffey, K. W. WadDdOeIl:l,10E..10Y3.9/CCh5eCkCm02e7n4e1Av
electron-donating
and
electron-withdrawing
groups
Chem. Soc., 2015, 137, 2665.
underwent the oxidation smoothly, affording the desired
oxidation products in almost quantitative yields (Table 2,
entries 1-10). With the presence of more amount of H2O2, 1,4-
benzenedimethanol was selectively oxidized to 1,4-
phthalaldehyde in 99% yield (Table 2, entry 11). 1-
Naphthalenemethanol and 9-anthracenemethanol also
reacted well to provide the desired aldehydes in excellent
yields (Table 2, entries 12-13). It was noteworthy that the
reaction of 9-anthracenemethanol took more time to
complete, probably due to the space steric hindrance.
and B. M. Goodson, Angew. Chem. Int. Ed., 2014, 53
7495.
,
8
9
S. Chao, Z. Bai, Q. Cui, H. Yan, K. Wang and L. Yang,
Carbon, 2015, 82, 77.
K. D. Hurley, Y. Zhang and J. R. Shapley, J. Am. Chem.
Soc., 2009, 131, 14172.
10 J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38
,
1213.
11 T. A. Makal, J. R. Li, W. Lu and H. C. Zhou, Chem. Soc.
Rev., 2012, 41, 7761.
12 Y. Han, J. R. Li, Y. Xie and G. Guo, Chem. Soc. Rev., 2014,
43, 5952.
The heterogeneous nature of RuCl3@MIL-101(Cr)-tpy was
investigated by using a hot filtration experiment. At ca. 30%
conversion, the reaction solution was quickly filtrated at the
reaction temperature in order to avoid re-deposition of
dissolved Ru upon cooling. The content of Ru in the filtrate was
below the detection limit of the AAS analysis. The isolated
solution was allowed to further react for 8 h. It was observed
the reaction was essentially stopped after the removal of the
catalyst (Fig. S6). This result strongly suggested that the
reaction would proceed mostly on the heterogeneous surface.
Moreover, the Ru content of the recycled catalyst was almost
identical to the fresh one. These studies indicated that the
leaching of Ru active sites was negligible, which could account
for the preservation of the catalytic activity of this catalytic
system after being reused for at least 5 times (Table 1, entry 9).
In summary, we have successfully incorporated terpyridyl
moiety into a new azido-functionalized MOF, MIL-101(Cr)-N3,
by using the CuAAC click reaction. The as-prepared MOF with
open terpyridyl unit may be used as a useful platform to
synthesize various single-site heterogeneous metal catalysts.
Preliminary metalation investigation demonstrated the
synthetic utilization of MIL-101(Cr)-tpy for the construction of
highly active single-site Ru(III) catalyst. Moreover, the catalyst
was easily recoverable and reusable for at least five times
without any apparent loss of catalytic efficiency. The proposed
PSM methodology starting from the aromatic rings that are
contained in the majority of MOFs, is believed to be applicable
to a wide range of MOFs that might bring new opportunities in
the development of highly active heterogeneous single-site
metal catalysts.
13 M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012,
112, 1196.
14 J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen
and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450.
15 K. K. Tanabe and S. M. Cohen, Inorg. Chem., 2010, 49
,
6766.
16 K. K. Tanabe and S. M. Cohen, Chem. Soc. Rev., 2011,
40, 498.
17 J. Canivet and D. Farrusseng, ChemCatChem, 2011, 3,
823.
18 K. K. Tanabe and S. M. Cohen, Angew. Chem. Int. Ed.,
2009, 48, 7424.
19 J. Gascon, A. Corma, F. Kapteijn and F. X. Llabrés i
Xamena, ACS Catal., 2014, 4, 361.
20 J. Canivet, S. Aguado, Y. Schuurman and D. Farrusseng,
J. Am. Chem. Soc., 2013, 135, 4195.
21 H. L. Jiang, D. W. Feng, T. F. Liu, J. R. Li and H. C. Zhou, J.
Am. Chem. Soc., 2012, 134, 14690.
22 G. Tuci, A. Rossin, X. Xu, M. Ranocchiari, J. A. van
Bokhoven, L. Luconi, I. Manet, M. Melucci and G.
Giambastiani, Chem. Mater., 2013, 25, 2297.
23 C. Liu, T. Li and N. L. Rosi, J. Am. Chem. Soc., 2012, 134
18886.
24 D. Chao and W. F. Fu, Chem. Commun., 2013, 49, 3872.
,
25 G. Zhang, E. Liu, C. Yang, L. Li, J. A. Golen and A. L.
Rheingold, Eur. J. Inorg. Chem., 2015, 2015, 939.
26 R. Shrestha, S. C. M. Dorn and D. J. Weix, J. Am. Chem.
Soc., 2013, 135, 751.
27 A. R. Mazzotti, M. G. Campbell, P. Tang, J. M. Murphy
and T. Ritter, J. Am. Chem. Soc., 2013, 135, 14012.
28 S. Bernt, V. Guillerm, C. Serre and N. Stock, Chem.
Commun., 2011, 47, 2838.
29 A. Khutia, H. U. Rammelberg, T. Schmidt, S. Henninger
and C. Janiak, Chem. Mater., 2013, 25, 790.
30 G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J.
This work was supported by the NSF of China (21322606
and 21436005), the Doctoral Fund of Ministry of Education of
China (20120172110012), the FRFCU (2015PY0002), and the
Guangdong NSF (S2011020002397, 2013B090500027, and
10351064101000000).
Dutour, S. Surbl
2040.
é and I. Margiolaki, Science, 2005, 309,
31 M. Savonnet, D. Bazer-Bachi, N. Bats, J. Perez-Pellitero,
E. Jeanneau, V. Lecocq, C. Pinel and D. Farrusseng, J.
Am. Chem. Soc., 2010, 132, 4518.
32 H. Liu, Y. Li, R. Luque and H. Jiang, Adv. Synth. Catal.,
2011, 353, 3107.
33 H. X. Wang, K. G. Zhou, Y. L. Xie, J. Zeng, N. N. Chai, J. Li
and H. L. Zhang, Chem. Commun., 2011, 47, 5747.
34 J. B. Gerken, M. L. Rigsby, R. E. Ruther, R. J. Pérez-
Rodríguez, I. A. Guzei, R. J. Hamers and S. S. Stahl, Inorg.
Chem., 2013, 52, 2796.
35 G. Barak, J. Dakka and Y. Sasson, J. Org. Chem., 1988,
53, 3553.
Notes and references
1
2
3
4
5
P. G. Sammes and G. Yahioglu, Chem. Soc. Rev., 1994,
23, 327.
G. Chelucci and R. P. Thummel, Chem. Rev., 2002, 102
,
3129.
A. Winter, G. R. Newkome and U. S. Schubert,
ChemCatChem, 2011, 3, 1384.
36 Q. X. Kang, J. J. Luo, Y. B. Bai, Z. W. Yang and Z. Q. Lei, J.
Organomet. Chem., 2005, 690, 6309.
37 M. Kotani, T. Koike, K. Yamaguchi and N. Mizuno, Green
Y. Gao, R. H. Crabtree and G. W. Brudvig, Inorg. Chem.,
2012, 51, 4043.
N. Kaveevivitchai, R. Chitta, R. Zong, M. El Ojaimi and R.
P. Thummel, J. Am. Chem. Soc., 2012, 134, 10721.
Chem., 2006, 8, 735.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins