The Journal of Organic Chemistry
Article
sample was not attempted since the solubility of copper(I) chloride is
low at room temperature.56 Triplicate measurements were taken to
ensure reproducibility of the copper(II) measurements using the
spectrophotometer. Based on repeated measurements, the uncertain-
ties in the reactant conversions are estimated to be 10% in all
experiments, the uncertainties in the chemical yields are estimated to
be 3%, and the estimated uncertainties in the molar ratios for
consumed reactants are 20%.
(13) Shipp, J. A.; Gould, I. R.; Shock, E. L.; Williams, L. B.; Hartnett,
H. E. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 11642−11645.
(14) Trahanovsky, W. S.; Wiberg, K. B. Oxidation in Organic
Chemistry, Vol. 5; Academic Press: New York, 1965.
(15) Ross, S. Oxidation Mechanisms. Application to Organic Chemistry;
Benjamin: New York, 1964.
(16) Organic Synthesis by Oxidation with Metal Compounds, Mijs, W.
J., de Jonge, C. R. H. I., Eds.; Plenum Press: New York, 1986.
(17) Nigh, W. G. In Oxidation in Organic Chemistry; Trahanovsky, W.
S., Ed.; Academic Press: New York, 1973; Vol. 5-B.
ASSOCIATED CONTENT
■
́
(18) Karlin, K. D.; Tyeklar, Z. In Advances in Inorganic Biochemistry,
S
* Supporting Information
Vol. 9; Eichhorn, G. L., Marzilli, L. G., Eds.; Prentice Hall: New York,
1993; pp 123−172.
The Supporting Information is available free of charge on the
(19) Reedijk, J.; Bouwman, E. In Bioinorganic Catalysis, 2nd ed.;
Marcel Dekker: New York, 1999.
Tables with experimental reaction times and conditions,
conversions, measurements of consumed organic reac-
tants and Cu(II)Cl2, mole ratios of consumed organics to
Cu(II)Cl2, chemical yields and mass balances for all
hydrothermal oxidation experiments (PDF)
(20) Harrison, P. M.; Hoare, J. R. Metals in Biochemistry; Chapman
and Hall: New York, 1980.
(21) (a) Marshall, C. P.; Fairbridge, R. W. Encyclopedia of
Geochemistry; Kluwer Academic Publishers: Dordrecht, The Nether-
lands, 1999. (b) Amend, J. P.; McCollom, T. M.; Hentscher, M.; Bach,
W. Geochim. Cosmochim. Acta 2011, 75, 5736−5748. (c) Melton, E.
D.; Swanner, E. D.; Behrens, S.; Schmidt, C.; Kappler, A. Nat. Rev.
Microbiol. 2014, 12, 797−808. (d) Schwarzenbach, R.; Gschwend, P.;
Imboden, D. Environmental Organic Chemistry, 2nd ed.; John Wiley &
Sons, Inc.: Hoboken, NJ, USA, 2005.
AUTHOR INFORMATION
■
Corresponding Authors
(22) Gamez, P.; Aubel, P. G.; Driessen, W. L.; Reedijk, J. Chem. Soc.
Rev. 2001, 30, 376−385.
(23) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M.
C. Chem. Rev. 2013, 113, 6234−6458.
Notes
The authors declare no competing financial interest.
(24) For some recent examples, see: (a) Rong, G.; Mao, J.; Liu, D.;
Yan, H.; Zheng, Y.; Chen, J. RSC Adv. 2015, 5, 26461−26464.
(b) Irudayanathan, F. M.; Edwin Raja, G. C.; Lee, S. Tetrahedron 2015,
71, 4418−4425. (c) Feng, Q.; Song, Q. J. Org. Chem. 2014, 79, 1867−
1871. (d) Feng, Q.; Song, Q. Adv. Synth. Catal. 2014, 356, 1697−1702.
(25) (a) Taylor, J. E.; Weygandt, J. C. Can. J. Chem. 1974, 52, 1925−
1933. (b) Thomas, J. W.; Taylor, J. E. Can. J. Chem. 1988, 66, 294−
299.
(26) Chen, X.; Tong, M. Acc. Chem. Res. 2007, 40, 162−170.
(27) Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1995, 117, 10401−10402.
(28) For oxidations with copper(III), see: Lennart, J. Acta Chem.
Scand. B 1981, B35, 682−689.
(29) Johnson, J. W.; Norton, D. Am. J. Sci. 1991, 291, 541−648.
(30) Harvey, A. H.; Friend, D. G. In Aqueous Systems at Elevated
Temperatures and Pressures; Palmer, D. A., Fernandez-Prini, R., Harvey,
A. H., Eds.; Elsevier: San Diego, CA, 2004.
(31) Sverjensky, D. A.; Shock, E. L.; Helgeson, H. C. Geochim.
Cosmochim. Acta 1997, 61, 1359−1412.
ACKNOWLEDGMENTS
■
The authors acknowledge helpful discussions with the members
of the Hydrothermal Organic Geochemistry (H.O.G.) group at
Arizona State University. We are thankful for National Science
Foundation Grant OCE-1357243 for the financial support.
REFERENCES
■
(1) (a) Avola, S.; Guillot, M.; da Silva-Perez, D.; Pellet-Rostaing, S.;
Kunz, W.; Goettmann, F. Pure Appl. Chem. 2013, 85, 89−103.
(b) Shanab, K.; Neudorfer, C.; Schirmer, E.; Spreitzer, H. Curr. Org.
Chem. 2013, 17, 1179−1187.
(2) (a) Siskin, M.; Katritzky, A. R. Science 1991, 254, 231.
(b) Katritzky, A. R.; Allin, S. M.; Siskin, M. Acc. Chem. Res. 1996,
29, 399. (c) Katritzky, A. R.; Nichols, D. A.; Siskin, M.; Murugan, R.;
Balasubramanian, M. Chem. Rev. 2001, 101, 837−892. (d) Siskin, M.;
Katritzky, A. R. Chem. Rev. 2001, 101, 825−835.
(3) (a) Akiya, N.; Savage, P. E. Chem. Rev. 2002, 102, 2725−2750.
(b) Hunter, S. E.; Savage, P. E. Chem. Eng. Sci. 2004, 59, 4903−4909.
(4) Watanabe, M.; Sato, T.; Inomata, H.; Smith, R. L.; Arai, K.;
Kruse, A.; Dinjus, E. Chem. Rev. 2004, 104, 5803−5821.
(5) (a) Yang, Z.; Gould, I. R.; Williams, L. B.; Hartnett, H. E.; Shock,
E. L. Geochim. Cosmochim. Acta 2012, 98, 48−65. (b) Shipp, J.; Gould,
I. R.; Herckes, P.; Shock, E. L.; Williams, L. B.; Hartnett, H. E.
Geochim. Cosmochim. Acta 2013, 104, 194−209.
(32) (a) Shock, E. L.; Helgeson, H. C. Geochim. Cosmochim. Acta
1990, 54, 915−945. (b) Johnson, J. W.; Oelkers, E. H.; Helgeson, H.
C. Comput. Geosci. 1992, 18, 899−947. (c) Shock, E. L. Am. J. Sci.
1995, 295, 496−580. (d) Helgeson, H. C.; Owens, C. E.; Knox, A. M.;
Richard, L. Geochim. Cosmochim. Acta 1998, 62, 985−1081.
(e) Plyasunov, A. V.; Shock, E. L. Geochim. Cosmochim. Acta 2001,
65, 3879−3900. (f) Schulte, M. D.; Shock, E. L.; Wood, R. H. Geochim.
Cosmochim. Acta 2001, 65, 3919−3930. (g) Plyasunov, A. V.; Shock, E.
L.; O’Connell, J. P. Fluid Phase Equilib. 2006, 247, 18−31.
(33) Wolery, T. W., Jarek, R. L. Software User’s Manual EQ3/6,
Version 8.0. U.S. Department of Energy, Office of Civilian Radioactive
Waste Management, Office of Repository Development, Software
Document Number 10813-UM-8.0-00 (2003), 376 pp.
(34) (a) Shock, E. L.; Sassani, D. C.; Willis, M.; Sverjensky, D. A.
Geochim. Cosmochim. Acta 1997, 61, 907−950. (b) Shock, E. L.;
Koretsky, C. M. Geochim. Cosmochim. Acta 1993, 57, 4899−4922.
(35) Katritzky, A. R.; Luxem, F. J.; Siskin, M. Energy Fuels 1990, 4,
514−517.
(6) Williams, L. B.; Canfield, B.; Voglesonger, K. M.; Holloway, J. R.
Geology 2005, 33, 913−916.
(7) Cleaves, H. J.; Scott, A. M.; Hill, F. C.; Leszczynski, J.; Sahaide,
N.; Hazen, R. Chem. Soc. Rev. 2012, 41, 5502−5525.
(8) McCollom, T. M. Geochim. Cosmochim. Acta 2013, 104, 330−
357.
(9) Seewald, J. S. Geochim. Cosmochim. Acta 2001, 65, 1641−1664.
(10) Lee, N.; Foustoukos, D. I.; Sverjensky, D. A.; Cody, G. D.;
Hazen, R. Geochim. Cosmochim. Acta 2014, 135, 66−86.
(11) Cody, G. D.; Boctor, N. Z.; Filley, T. R.; Hazen, R. M.; Scott, J.
H.; Sharma, A.; Yoder, H. S. Science 2000, 289, 1337−1340.
(12) Schoonen, M. A. A.; Harrington, A. D.; Laffers, R.; Strongin, D.
R. Geochim. Cosmochim. Acta 2010, 74, 4971−4987.
(36) Toussaint, O.; Capdevielle, P.; Maumy, M. Synthesis 1986, 1986,
1029−1031.
F
J. Org. Chem. XXXX, XXX, XXX−XXX