Full Papers
[26] Q. Sun, Z. F. Dai, X. L. Liu, N. Sheng, F. Deng, X. J. Meng, F. S. Xiao, J. Am.
Chem. Soc. 2015, 137, 5204–5209.
[27] A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, Chem. Sci. 2011, 2,
686–689.
[28] F. Wang, J. Mielby, F. H. Richter, G. H. Wang, G. Prieto, T. Kasama, C. Wei-
denthaler, H. J. Bongard, S. Kegnæs, A. Fꢄrstner, F. Schꢄth, Angew.
Chem. Int. Ed. 2014, 53, 8645–8648; Angew. Chem. 2014, 126, 8789–
8792.
using gas chromatography (BRUKER 450-GC) with a capillary
column (GCBP; 30 mꢁ0.53 mm, 1.0 mm film thickness) connected
to a flame ionization detector. The turnover frequency after 2 h re-
action was defined as the number of molecules (mol) converted
per time (h) normalized by catalyst weight (g) or the number of
metal atoms (mol).
[29] Q. R. Fang, S. Gu, J. Zheng, Z. B. Zhuang, S. L. Qiu, Y. S. Yan, Angew.
Chem. Int. Ed. 2014, 53, 2878–2882; Angew. Chem. 2014, 126, 2922–
2926.
Acknowledgments
[30] X. S. Wang, M. Chrzanowski, D. Q. Yuan, B. S. Sweeting, S. Q. Ma, Chem.
Mater. 2014, 26, 1639–1644.
[31] P. Zhang, Z. H. Weng, J. Guo, C. C. Wang, Chem. Mater. 2011, 23, 5243–
5249.
[32] S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J.
Am. Chem. Soc. 2011, 133, 19816–19822.
[33] B. Saha, D. Gupta, M. M. Abu-Omar, A. Modak, A. Bhaumik, J. Catal.
2013, 299, 316–320.
We are grateful to the financial support from the National Basic
Research Program of China (973 Program, grant nos.
2012CB821700, 2014CB931800), National Natural Science Foun-
dation of China (NSFC grant nos. 21501024, 21401069), and
Major International (Regional) Joint Research Project of NSFC
(grant no. 21120102034).
[34] Y. G. Zhang, S. N. Riduan, J. Y. Ying, Chem. Eur. J. 2009, 15, 1077–1081.
[35] L. Chen, Y. Yang, D. L. Jiang, J. Am. Chem. Soc. 2010, 132, 9138–9143.
[36] R. K. Totten, Y. S. Kim, M. H. Weston, O. K. Farha, J. T. Hupp, S. T. Nguyen,
J. Am. Chem. Soc. 2013, 135, 11720–11723.
Keywords: heterogeneous catalysis · metalloporphyrin single
sites
· porous aromatic frameworks · selective styrene
oxidation · superior catalytic performance
[37] J. X. Jiang, C. Wang, A. Laybourn, T. Hasell, R. Clowes, Y. Z. Khimyak, J. L.
Xiao, S. J. Higgins, D. J. Adams, A. I. Cooper, Angew. Chem. Int. Ed. 2011,
50, 1072–1075; Angew. Chem. 2011, 123, 1104–1107.
[38] B. Y. Li, Z. H. Guan, W. Wang, X. J. Yang, J. L. Hu, B. Tan, T. Li, Adv. Mater.
2012, 24, 3390–3395.
[39] P. Puthiaraj, K. Pitchumani, Green Chem. 2014, 16, 4223–4233.
[40] K. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti, F. Vilela, Angew.
Chem. Int. Ed. 2013, 52, 1432–1436; Angew. Chem. 2013, 125, 1472–
1476.
[41] J. X. Jiang, Y. Y. Li, X. F. Wu, J. L. Xiao, D. J. Adams, A. I. Cooper, Macromo-
lecules 2013, 46, 8779–8783.
[42] C. E. Chan-Thaw, A. Villa, P. Katekomol, D. S. Su, A. Thomas, L. Prati,
Nano Lett. 2010, 10, 537–541.
[1] A. P. Cꢂtꢃ, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M.
Yaghi, Science 2005, 310, 1166–1170.
[2] N. B. McKeown, P. M. Budd, Macromolecules 2010, 43, 5163–5176.
[3] A. I. Cooper, Adv. Mater. 2009, 21, 1291–1295.
[4] T. Ben, H. Ren, S. Q. Ma, D. P. Cao, J. H. Lan, X. F. Jing, W. C. Wang, J. Xu,
F. Deng, J. M. Simmons, S. L. Qiu, G. S. Zhu, Angew. Chem. Int. Ed. 2009,
48, 9457–9460; Angew. Chem. 2009, 121, 9621–9624.
[5] X. Q. Zou, H. Ren, G. S. Zhu, Chem. Commun. 2013, 49, 3925–3936.
[6] F. Vilela, K. Zhang, M. Antonietti, Energy Environ. Sci. 2012, 5, 7819–
7832.
[7] Y. H. Xu, S. B. Jin, H. Xu, A. Nagai, D. L. Jiang, Chem. Soc. Rev. 2013, 42,
8012–8031.
[8] M. D. Guiver, Y. M. Lee, Science 2013, 339, 284–285.
[9] S. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. B. Zhao,
A. R. Paris, D. Kim, P. D. Yang, O. M. Yaghi, C. J. Chang, Science 2015,
349, 1208–1213.
[43] W. J. Zhang, P. P. Jiang, Y. Wang, J. Zhang, P. B. Zhang, Appl. Catal. A
2015, 489, 117–122.
[44] C. Zou, M. Zhao, C. D. Wu, Catal. Commun. 2015, 66, 116–120.
[45] K. N. Zhang, O. K. Farha, J. T. Hupp, S. T. Nguyen, ACS Catal. 2015, 5,
4859–4866.
[46] L. J. Feng, Q. Chen, J. H. Zhu, D. P. Liu, Y. C. Zhao, B. H. Han, Polym.
Chem. 2014, 5, 3081–3088.
[10] P. Kaur, J. T. Hupp, S. T. Nguyen, ACS Catal. 2011, 1, 819–835.
[11] Q. Sun, Z. F. Dai, X. J. Meng, L. Wang, F. S. Xiao, ACS Catal. 2015, 5,
4556–4567.
[12] M. P. de Almeida, S. A. C. Carabineiro, ChemCatChem 2012, 4, 18–29.
[13] L. Y. Li, Z. L. Chen, H. Zhong, R. H. Wang, Chem. Eur. J. 2014, 20, 3050–
3060.
[47] S. Fischer, J. Schmidt, P. Strauch, A. Thomas, Angew. Chem. Int. Ed. 2013,
52, 12174–12178; Angew. Chem. 2013, 125, 12396–12400.
[48] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson,
R. S. Smart, Appl. Surf. Sci. 2011, 257, 2717–2730.
[49] B. B. Wentzel, P. L. Alsters, M. C. Feiters, R. J. M. Nolte, J. Org. Chem.
2004, 69, 3453–3464.
[14] Q. Sun, X. J. Meng, X. Liu, X. M. Zhang, Y. Yang, Q. H. Yang, F. S. Xiao,
Chem. Commun. 2012, 48, 10505–10507.
[50] J. R. L. Smith, Y. Iamamoto, F. S. Vinhado, J. Mol. Catal. A 2006, 252, 23–
30.
[15] L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 2014, 5, 2789–
2793.
[51] M. J. Zdilla, J. L. Dexheimer, M. M. Abu-Omar, J. Am. Chem. Soc. 2007,
129, 11505–11511.
[52] C. Arunkumar, Y. M. Lee, J. Y. Lee, S. Fukuzumi, W. Nam, Chem. Eur. J.
2009, 15, 11482–11489.
[16] R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F. Schꢄth, Angew. Chem.
Int. Ed. 2009, 48, 6909–6912; Angew. Chem. 2009, 121, 7042–7045.
[17] Z. G. Xie, C. Wang, K. E. deKrafft, W. B. Lin, J. Am. Chem. Soc. 2011, 133,
2056–2059.
[53] H. Y. Chen, H. B. Ji, X. T. Zhou, J. C. Xu, L. F. Wang, Catal. Commun. 2009,
10, 828–832.
[18] Y. Z. Lei, L. J. Wu, X. F. Zhang, H. Mei, Y. L. Gu, G. X. Li, J. Mol. Catal. A
2015, 398, 164–169.
[54] A. M. d’A. Rocha Gonsalves, A. C. Serra, J. Chem. Soc. Perkin Trans. 2
2002, 715–719.
[55] C. J. Liu, W. Y. Yu, C. M. Che, C. H. Yeung, J. Org. Chem. 1999, 64, 7365–
7374.
[19] E. Verde-Sesto, M. Pintado-Sierra, A. Corma, E. M. Maya, J. G. de La Cam-
pa, M. Iglesias, F. Sꢅnchez, Chem. Eur. J. 2014, 20, 5111–5120.
[20] J. Thote, H. B. Aiyappa, A. Deshpande, D. D. Dꢆaz, S. Kurungot, R.
Banerjee, Chem. Eur. J. 2014, 20, 15961–15965.
[56] G. A. E. Oxford, M. C. Curet-Arana, D. Majumder, R. W. Gurney, M. L.
Merlau, S. T. Nguyen, R. Q. Snurr, L. J. Broadbelt, J. Catal. 2009, 266,
145–155.
[21] N. Kang, J. H. Park, K. C. Ko, J. Chun, E. Kim, H. W. Shin, S. M. Lee, H. J.
Kim, T. K. Ahn, J. Y. Lee, S. U. Son, Angew. Chem. Int. Ed. 2013, 52, 6228–
6232; Angew. Chem. 2013, 125, 6348–6352.
[57] L. M. Wilson, A. C. Griffin, J. Mater. Chem. 1993, 3, 991–994.
[58] P. J. F. Gauuan, M. P. Trova, L. Gregor-Boros, S. B. Bocckino, J. D. Crapo,
B. J. Day, Bioorg. Med. Chem. 2002, 10, 3013–3021.
[22] X. Wang, S. M. Lu, J. Li, Y. Liu, C. Li, Catal. Sci. Technol. 2015, 5, 2585–
2589.
[23] E. Merino, E. Verde-Sesto, E. M. Maya, M. Iglesias, F. Sꢅnchez, A. Corma,
Chem. Mater. 2013, 25, 981–988.
[24] S. J. Kraft, R. H. Sꢅnchez, A. S. Hock, ACS Catal. 2013, 3, 826–830.
[25] H. J. Mackintosh, P. M. Budd, N. B. McKeown, J. Mater. Chem. 2008, 18,
573–578.
Received: April 20, 2016
Published online on && &&, 0000
&
ChemCatChem 2016, 8, 1 – 9
8
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÝÝ These are not the final page numbers!