Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Letter
NJC
9 L. F. Xiong, H. Zhang, A. Q. Zhong, Z. D. He and K. Huang,
Chem. Commun., 2014, 50, 14778–14781.
10 D. E. Bergbreiter, Catal. Today, 1998, 42, 389–397.
11 A. Datta, K. Ebert and H. Plenio, Organometallics, 2003, 22,
4685–4691.
12 A. Kollhofer and H. Plenio, Chem. – Eur. J., 2003, 9,
1416–1425.
13 P. Li, C. Y. Cao, Z. Chen, H. Liu, Y. Yu and W. G. Song,
Chem. Commun., 2012, 48, 10541–10543.
14 P. Li, C.-Y. Cao, H. Liu, Y. Yu and W.-G. Song, J. Mater.
Chem. A, 2013, 1, 12804.
15 H. J. Liu, Y. L. Cao, F. Wang and Y. Q. Huang, ACS Appl.
Mater. Interfaces, 2014, 6, 819–825.
16 Y. S. Yun, D. Kim, H. H. Park, Y. Tak and H. J. Jin, Synth.
Met., 2012, 162, 2337–2341.
17 C. H. You, S. J. Liao, X. C. Qiao, X. Y. Zeng, F. F. Liu,
R. P. Zheng, H. Y. Song, J. H. Zeng and Y. W. Li, J. Mater.
Chem. A, 2014, 2, 12240–12246.
(Table S1, ESI†). The above results indicated that the SO3H–
MONNs and NH2–MONNs catalysts possessed excellent recycl-
ability and stability.
Cascade reactions with either free acid or free base, and no
catalysts were also performed as control experiments (Table 1).
As predicted, little or no target product was generated when
the reaction was conducted only with the SO3H–MONNs,
NH2–MONNs or without the catalysts. Similar results were also
obtained when using small-molecule catalysts benzoic acid or
n-butylamine with NH2–MONNs or SO3H–MONNs as catalysts
(entries 5 and 6) respectively, which might be related to the fact
that the small molecule catalysts could diffuse freely into the
inner core of the MONNs and deactivate the antipathic catalytic
active-sites through the acid–base neutralization reaction. So,
the impaired MONNs catalysts were invalid in the cascade
reactions. The above results proved that the MONNs can
effectively isolate the active-sites and protect from the mutual
deactivation of the incompatible catalytic groups, with high
catalytic performance in one-pot cascade reactions.
In summary, we have developed a new way to prepare
SO3H– and NH2–MONNs as heterogeneous catalysts for tandem
reactions. Based on their novel hierarchically porous structure
and site-isolation effect, the MONNs supported acid and
base catalyst systems present a good catalytic performance for
one-pot cascade reactions. This work might provide a general
pathway to anchor incompatible catalyst systems into MONNs
supports for various one-pot cascade reactions.
18 A. M. Baena-Moncada, G. M. Morales, C. Barbero, G. A.
Planes, J. Florez-Montano and E. Pastor, Catalysts, 2013, 3,
902–913.
19 Y. Zhu, Z. L. Hua, Y. D. Song, W. Wu, X. X. Zhou, J. Zhou and
J. L. Shi, J. Catal., 2013, 299, 20–29.
20 J. A. Zhou, Z. L. Hua, Z. C. Liu, W. Wu, Y. Zhu and J. L. Shi,
ACS Catal., 2011, 1, 287–291.
21 J. Y. Gu, X. M. Wang, L. Tian, L. Feng, J. Y. Qu, P. G. Liu and
X. Zhang, Langmuir, 2015, 31, 12530–12536.
22 X. F. Zhou, A. J. Duan, Z. Zhao, Y. J. Gong, H. D. Wu, J. M. Li,
Y. C. Wei, G. Y. Jiang, J. Liu and Y. Zhang, J. Mater. Chem. A,
2014, 2, 6823–6833.
This work was financially supported by the National Natural
Science Foundation of China (51273066, 21574042) and the
Shanghai Pujiang Program grant (13PJ1402300).
23 X. Du and J. H. He, Nanoscale, 2012, 4, 852–859.
24 X. Du, Y. L. Sun, B. E. Tan, Q. F. Teng, X. J. Yao, C. Y. Su and
W. Wang, Chem. Commun., 2010, 46, 970–972.
25 C. A. Wang, Z. K. Zhang, T. Yue, Y. L. Sun, L. Wang,
W. D. Wang, Y. Zhang, C. Liu and W. Wang, Chem. – Eur.
J., 2012, 18, 6718–6723.
Notes and references
1 M. Poliakoff, J. M. Fitzpatrick, T. R. Farren and P. T. Anastas,
Science, 2002, 297, 807–810.
2 I. T. Horvath and P. T. Anastas, Chem. Rev., 2007, 107, 26 Q. Sun, Z. F. Dai, X. L. Liu, N. Sheng, F. Deng, X. J. Meng and
2169–2173. F. S. Xiao, J. Am. Chem. Soc., 2015, 137, 5204–5209.
3 F. Zhang, H. Y. Jiang, X. Y. Li, X. T. Wu and H. X. Li, ACS 27 L. Q. Ma, M. M. Wanderley and W. B. Lin, ACS Catal., 2011,
Catal., 2014, 4, 394–401. 1, 691–697.
4 W. F. Zhang, Q. S. Zhao, T. Liu, Y. Gao, Y. Li, G. L. Zhang, F. B. 28 K. Huang and J. Rzayev, J. Am. Chem. Soc., 2009, 131,
Zhang and X. B. Fan, Ind. Eng. Chem. Res., 2014, 53, 1437–1441. 6880–6885.
5 N. T. S. Phan, C. S. Gill, J. V. Nguyen, Z. J. Zhang and 29 E. Merino, E. Verde-Sesto, E. M. Maya, M. Iglesias,
´
F. Sanchez and A. Corma, Chem. Mater., 2013, 25, 981–988.
C. W. Jones, Angew. Chem., Int. Ed., 2006, 45, 2209–2212.
6 G. A. Molander, S. L. J. Trice and S. M. Kennedy, J. Org. 30 M. Bouhrara, C. Ranga, A. Fihri, R. R. Shaikh, P. Sarawade,
Chem., 2012, 77, 8678–8688.
7 L. Xu, C. G. Li, K. Zhang and P. Wu, ACS Catal., 2014, 4,
2959–2968.
8 J. S. Gao, X. Y. Zhang, Y. Lu, S. M. Liu and J. Liu,
Chem. – Eur. J., 2015, 21, 7403–7407.
A. H. Emwas, M. N. Hedhili and V. Polshettiwar, ACS
Sustainable Chem. Eng., 2013, 1, 1192–1199.
31 D. C. Wu, A. Nese, J. Pietrasik, Y. R. Liang, H. K. He,
M. Kruk, L. Huang, T. Kowalewski and K. Matyjaszewski,
ACS Nano, 2012, 6, 6208–6214.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016