Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
has been confirmed by site-selective photo-deposition of PbO2 on
the surface of TiO2 by the excitation of WO3 alone. This charge
transfer ensures the efficient separation of charge carriers generated
on WO3. TiO2 nanoparticles modification drastically improved the
visible-light activity of Cu(II)–WO3. Its visible light activity
showed B3.5 fold higher reaction rate than Cu(II)–WO3, which
was reported as one of the best efficient visible-light photocatalysts
to date. Here TiO2 plays an important role as a co-catalyst and is
used for the accumulation of holes from WO3. We have investigated
the effect of TiO2 addition to Cu(II)–WO3 for other commercial
TiO2 particles, then this commercial TiO2 also enhanced the photo-
catalytic activity of Cu(II)–WO3 (see Fig. S9, ESIw). The simple
strategy, i.e. modification of TiO2 onto Cu(II)–WO3 used in this
study promises to be very valuable for designing more efficient
visible-light-active photocatalysts using other semiconductors.
This work is supported by the New Energy and Industrial
Technology Development Organization (NEDO) in Japan. We
would like to thank the Japan Society for the Promotion of Science
(JSPS) for providing the JSPS fellowship. This work was initiated
by the discussion with Mr K. Yotsugi and Mr S. Yanai in
Sekisuijushi Technical Research Corporation.
Fig. 4 Initial reaction rate of CO2 generation over TiO2, Cu(II)–WO3,
and TiO2 modified Cu(II)–WO3.
enhances the photocatalytic activity of WO3. It shows B3.5 fold
higher reaction rates than Cu(II)–WO3. The photocatalytic activity
as a function of TiO2 loading in TiO2 modified Cu(II)–WO3 can be
found in the ESIw (Fig. S8). Since we carried out the photocatalytic
reactions under light-limited conditions,11 the photocatalytic
efficiency largely depends on the charge separation. High visible-
light sensitivity of TiO2 modified Cu(II)–WO3 is due to its efficient
charge separation for both holes and electrons. TiO2 nanoparticles
act as co-catalysts for oxidation reaction by the extraction of holes
from WO3, while the Cu(II) nanoclusters act as cocatalysts for
reduction reaction through the multi-electrons reduction for
adsorbed oxygen molecules.9 Kinetic fluorescence lifetime analysis
(Fig. 5), revealing that TiO2 modified Cu(II)–WO3 shows a slow
decay curve with long-lived (382 ps) charge carriers, whereas Cu(II)–
WO3 exhibits fast decay with short-lived (188 ps) carriers. The high
photocatalytic activity of TiO2 modified Cu(II)–WO3 is assigned to
its slow recombination rate. The trade off relation observed between
photocatalytic activity and fluorescence analysis is consistent with
the previous studies12 (detailed discussion can be found in ESIw).
Long-lived photo-generated charge carriers in the present study are
mainly due to the addition of TiO2 on Cu(II)–WO3.
Notes and references
1 (a) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga,
Science, 2001, 293, 269–271; (b) H. Irie, Y. Watanabe and
K. Hashimoto, J. Phys. Chem. B, 2003, 107, 5483–5486.
2 H. Irie, S. Miura, K. Kamiya and K. Hashimoto, Chem. Phys.
Lett., 2008, 457, 202–205.
3 (a) R. Abe, H. Takami, N. Murakami and B. Ohtani, J. Am. Chem.
Soc., 2008, 130, 7780–7781; (b) H. Yu, H. Irie, Y. Shimodaira,
Y. Hosogi, Y. Kuroda, M. Miyauchi and K. Hashimoto, J. Phys.
Chem. C, 2010, 114, 16481–16487; (c) X. Qiu, M. Miyauchi, H. Yu,
H. Irie and K. Hashimoto, J. Am. Chem. Soc., 2010, 132, 15259–15267;
(d) S. Anandan, N. Ohashi and M. Miyauchi, Appl. Catal., B, 2010, 100,
502–509; (e) S. Anandan and M. Miyauchi, Phys. Chem. Chem. Phys.,
2011, 13, 14937–14945; (f) Z. G. Zhao and M. Miyauchi, Angew. Chem.,
Int. Ed., 2008, 47, 7051–7055; (g) A. Nakajima, Y. Akiyama,
S. Yanagida, T. Koike, T. Isobe, Y. Kameshima and K. Okada, Mater.
Lett., 2009, 63, 1699–1701.
4 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi,
E. A. Santori and N. S. Lewis, Chem. Rev., 2010, 110, 6446–6473.
5 (a) N. Serpone, E. Borgarello and M. Gratzel, J. Chem. Soc.,
Chem. Commun., 1984, 342–344; (b) H. Tada, A. Hattori,
Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B,
2000, 104, 4585–4587; (c) G. Marci, V. Augugliaro, M. J. Lopez-
Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. J. D.
Tilley and A. M. Venezia, J. Phys. Chem. B, 2001, 105, 1026–1032;
(d) M. Miyauchi, A. Nakajima, T. Watanabe and K. Hashimoto,
Chem. Mater., 2002, 14, 4714–4720.
In conclusion, the visible-light induced charge transfer is success-
fully investigated in the Cu(II)–WO3/TiO2 thin-film. Hole transfer
6 (a) K. Tanaka, K. Harada and S. Murata, Sol. Energy, 1986, 36,
159–161; (b) J. M. Hermann, J. Disdier and P. Pichat, J. Catal.,
1988, 113, 72–81.
7 T. Ohno, K. Sarukawa and M. Matsumura, New J. Chem., 2002,
26, 1167–1170.
8 (a) G. R. Bamwenda, K. Sayama and H. Arakawa, J. Photochem.
Photobiol., A, 1999, 122, 175–183; (b) T. Torimoto, N. Nakamura,
S. Ikeda and B. Ohtani, Phys. Chem. Chem. Phys., 2002, 4,
5910–5914; (c) M. Miyauchi, A. Nakajima, K. Hashimoto and
T. Watanabe, Adv. Mater., 2000, 12, 1923–1927.
9 Y. Nosaka, S. Takahashi, H. Sakamoto and A. Y. Nosaka,
J. Phys. Chem. C, 2011, 115, 21283–21290.
10 J. M. Coronado, A. J. Maira, J. C. Conesa, K. L. Yeung,
V. Augugliaro and J. Soria, Langmuir, 2001, 17, 5368–5374.
11 H. Gerischer, Electrochim. Acta, 1993, 38, 3–9.
12 (a) H. N. Ghosh and S. Adhikari, Langmuir, 2001, 17, 4129–4130;
(b) Z. Zhang, Q. Lin, D. Kurunthu, T. Wu, F. Zuo, S. T. Zheng,
C. J. Bardeen, X. Bu and P. Feng, J. Am. Chem. Soc., 2011, 133,
6934–6937.
Fig. 5 Time resolved fluorescence decay analysis of Cu(II)–WO3, and
TiO2 modified Cu(II)–WO3.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 4323–4325 4325