Table 1 Catalytic activities in aerobic oxidation of alcohols over Au/SBA-15-Py and Au/SBA-15-N catalystsa
Substrate
Product
Catalyst
Time/h
Conv. (%)
Sel. (%)
Phenylethanol
Acetophenone
Au/SBA-15-Py
Au/SBA-15-Pyb
Au/SBA-15-Pyc
Au/SBA-15-N
Au/SBA-15-Py
Au/SBA-15-N
Au/SBA-15-Py
Au/SBA-15-N
Au/SBA-15-Py
Au/SBA-15-N
Au/SBA-15-Py
Au/SBA-15-N
Au/SBA-15-Py
Au/SBA-15-N
10
10
10
10
12
12
24
24
20
20
24
24
24
24
94.0
94.0
93.9
80.0
90.0
76.9
74.3
56.2
70.1
64.0
66.5
60.0
50.7
41.0
>99.5
>99.5
>99.5
>99.5
88.0
Benzyl Alcohol
2-Butanol
Benzoic Acid
2-Butanone
90.0
>99.5
>99.5
>99.5
>99.5
>99.5
>99.5
98.0
1,4-Butanediol
Cyclohexanol
1-Butanol
Butyrolactone
Cyclohexanone
1-Butyric Acid
99.0
a
b
c
Reaction conditions: 130 1C, 5.0 MP of O2, 10 mg of catalyst, 3 mmol of substrate, 0.8 mmol of NaAc, 5 ml of water. Reuse. Recycles for
3 times.
This work is supported by the National Natural Science
Foundation of China (20973079) and the State Basic Research
Project of China (2009CB623501).
Soc., 2005, 127, 10480; (c) W. Yan, S. M. Mahurin, S. H. Overbury
and S. Dai, Top. Catal., 2006, 39, 199.
6 (a) X. Zhang, H. Shi and B. Xu, Angew. Chem., Int. Ed., 2005, 44,
7132; (b) D. He, H. Shi, Y. Wu and B. Xu, Green Chem., 2007, 9,
849; (c) H. Sun, F. Su, J. Ni, Y. Cao, H. He and K. Fan, Angew.
Chem., Int. Ed., 2009, 48, 4390.
7 (a) A. Abad, P. Concepcion, A. Corma and H. Garcia, Angew.
Chem., Int. Ed., 2005, 44, 4066; (b) F. Su, Y. Liu, L. Wang, Y. Cao,
H. He and K. Fan, Angew. Chem., Int. Ed., 2008, 47, 334.
8 (a) S. Biella, L. Prati and M. Rossi, J. Catal., 2002, 206, 242;
(b) S. Carrettin, P. McMorn, P. Johnston, K. Griffin and
G. J. Hutchings, Chem. Commun., 2002, 696; (c) S. Biella and
M. Rossi, Chem. Commun., 2003, 378.
9 (a) H. Tsunoyama, N. Ichikuni, H. Sakuria and T. Tsukuda,
J. Am. Chem. Soc., 2009, 131, 7086; (b) H. Tsunoyama,
H. Sakurai, Y. Negishi and T. Tsukuda, J. Am. Chem. Soc.,
2005, 127, 9374; (c) T. Wang, H. Shou, Y. Kou and H. Liu, Green
Chem., 2009, 11, 562; (d) W. Hou, N. A. Dehm and R. W. J. Scott,
J. Catal., 2008, 253, 22.
10 (a) R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidations of
Organic Compounds, Academic Press, New York, 1981;
(b) R. A. Sheldon and J. Dakka, Catal. Today, 1994, 19, 215;
(c) R. A. Sheldon, I. C. W. E. Arends and A. Dijksman, Catal.
Today, 2000, 57, 157; (d) R. A. Sheldon, Chemtech, 1991, 566.
11 (a) M. Caldarelli, J. Habermann and S. V. Ley, J. Chem. Soc.,
Perkin Trans. 1, 1999, 107; (b) B. Hinzen and S. V. Ley, J. Chem.
Soc., Perkin Trans. 1, 1997, 1907; (c) G. Cainelli and G. Cardillo,
Chromium Oxidations in Organic Chemistry, Springer, Berlin, 1984.
12 (a) G. J. ten Brink, I. W. C. E. Arends and R. A. Sheldon, Science,
2000, 287, 1636, and reference therein; (b) T. Mallat and A. Baiker,
Chem. Rev., 2004, 104, 3037; (c) B. M. Trost, Science, 1991, 254,
1471.
Notes and references
z X-Ray diffraction patterns (XRD) were obtained with a Siemens
D5005 diffractometer and Rigaku D/MAX 2550 diffractometer with
Cu-Ka radiation. The average sizes of Au nanoparticles estimated by
XRD were calculated using the half-width of the gold peak at 2y =
38.31 by applying the Sherrer equation. Transmission electron micro-
scopy (TEM) experiments were performed on a JEM-200CX electron
microscope (JEOL, Japan) with an acceleration voltage of 300 kV. The
contents of Au were determined by inductively coupled plasma (ICP)
with a Perkin-Elmer plasma 40 emission spectrometer. Diffuse reflec-
tance ultraviolet-visible (UV-vis) spectra were measured with spectro-
meter of PE Lambda 20, and BaSO4 was an internal standard sample.
The 13C NMR spectra were recorded on a Bruker Avance-400WB
spectrometer using a CP-TOSS program with 7.5 mm of MAS probe,
12 kHz of spinning rate, repetition time of 3s, contact time of 1s. XPS
spectra was performed on a Thermo ESCALAB 250 with Al Ka
radition at y = 901 for the X-ray sources, the binding energies were
calibrated using the C1s peak at 284.9 eV.
1 (a) G. J. Hutchings, J. Catal., 1985, 96, 292; (b) M. Haruta,
T. Koboyashi, H. Sano and N. Yamada, Catal. Lett., 1987, 16,
405.
2 (a) G. J. Hutchings, Catal. Today, 2007, 122, 196; (b) A. A.
Herzing, C. J. Kiely, A. F. Carley, P. Landon and G. J.
Hutchings, Science, 2008, 321, 1331; (c) T. V. Choudhary and
D. W. Goodman, Top. Catal., 2002, 21, 25; (d) C. W. Corti,
R. J. Holliday and D. T. Thompson, Appl. Catal., A, 2005, 291,
253.
3 (a) A. Corma and H. Garcia, Chem. Soc. Rev., 2008, 37, 2096;
(b) A. Grirrane, A. Corma and H. Garcia, J. Catal., 2009, 268, 350;
(c) C. Aprile, A. Corma, M. E. Domine, H. Garcia and
C. Mitchell, J. Catal., 2009, 264, 44.
4 (a) J. C. Fierro-Gonzalez and B. C. Gates, Chem. Soc. Rev., 2008,
37, 2127; (b) V. Aguilar-Guerrero and B. C. Gates, Chem.
Commun., 2007, 3210; (c) J. Guzman and B. C. Gates, J. Am.
Chem. Soc., 2004, 126, 2672.
13 J. A. Hirsch, J. Org. Chem., 1979, 44, 3225.
14 (a) Y. Jin, P. Wang, D. Yin, J. Liu, H. Qiu and N. Yu, Microporous
Mesoporous Mater., 2008, 111, 569; (b) R. S. Clegg, S. M. Reed,
R. K. Smith, B. L. Barron, J. A. Rear and J. E. Hutchison,
Langmuir, 1999, 15, 8876.
15 B. Lee, Z. Ma, Z. Zhang, C. Park and S. Dai, Microporous
Mesoporous Mater., 2009, 122, 160.
16 E. Sacaliuc, A. M. Beale, B. M. Weckhuysen and T. A. Nijhuis,
J. Catal., 2007, 248, 235.
17 (a) Y.-F. Han, Z. Zhong, K. Ramesh, F. Chen and L. Chen,
J. Phys. Chem. C, 2007, 111, 3163; (b) F.-Z. Su, M. Chen,
L.-C. Wang, X.-S. Huang, Y.-M. Liu, Y. Cao, H.-Y. He and
K.-N. Fan, Catal. Commun., 2008, 9, 1027.
5 (a) W. Yan, S. Brown, Z. Pan, S. M. Mahurin, S. H. Overbury and
S. Dai, Angew. Chem., Int. Ed., 2006, 45, 3614; (b) W. Yan,
S. M. Mahurin, Z. Pan, S. H. Overbury and S. Dai, J. Am. Chem.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 5003–5005 | 5005