Table 3 Oxidation of trans-stilbene at different temperaturesa
In conclusion, we have shown that FePt@Cu NWs are an
effective catalyst for stilbene epoxidation in o-xylene with
oxygen as the sole oxidant. This catalytic reaction underwent
a free radical process, and the catalytic activity was com-
parable to that of a previously reported Au/TiO2 catalyst. Our
finding will broaden the application of nanomaterial catalysts
in organic reactions.
Entry
T/1C
Conv. (%)b
Select. (%)b
1
2
3
4
60
80
100
120
—
—
99
97.8
37.2
9.8
87.0
100
a
All reactions were carried out with 0.9 mg FePt@Cu NWs,
0.2 mmol trans-stilbene, and 2 ml o-xylene for 24 h under oxygen
This work was supported by the Natural Science Founda-
tion of China (NSFC) (20876101), NSF of Jiangsu Province
(BK2008158).
b
(1 atm). GC yield.
The activity of FePt@Cu NWs at different temperatures
was investigated using o-xylene as the solvent. Temperature
exerted a tremendous influence on the conversion and selecti-
vity of both o-xylene (Table S2) and trans-stilbene (Table 3).
At lower temperature (o60 1C), almost no reaction occurred
for the FePt@Cu catalyst. When the temperature was elevated
to 80 1C, the conversion efficiency increased to 9.8% with a
high selectivity (99%) (Table 3 entry 2). The optimal tempera-
ture for this reaction was 100 1C (Table 3 entry 3), and
the yield of the epoxidation product increased to 85%. When
the temperature was increased to 120 1C, trans-stilbene was
quantitatively converted, but the selectivity decreased to 37.2%.
Most of the trans-stilbene was converted to benzaldehyde and
benzoic acid.
Notes and references
1 K. A. Jorgenson, Chem. Rev., 1989, 89, 431.
2 S. H. Wang, B. S. Mandimutsira, R. Todd, B. Ramdhanie,
J. P. Fox and D. P. Goldberg, J. Am. Chem. Soc., 2004, 126, 18;
X. L. Geng, Z. Wang, X. Q. Li and C. Zhang, J. Org. Chem., 2005,
70, 9610; W. Adam, K. J. Roschmann, C. R. Saha-Moller and
¨
D. Seebach, J. Am. Chem. Soc., 2002, 124, 5068.
3 X. Y. Quek, Q. H. Tang, S. Q. Hu and Y. H. Yang, Appl. Catal., A,
2009, 361, 130.
4 P. Lignier, M. Comotti, F. Schuth, J. L. Rousset and V. Caps,
¨
Catal. Today, 2009, 141, 355; P. Lignier, S. Mangematin,
F. Morfin, J. L. Rousset and V. Caps, Catal. Today, 2008, 138,
50; P. Lignier, F. Morfin, S. Mangematin, L. Massin, J. L. Rousset
and V. Caps, Chem. Commun., 2007, 186; D. Gajan, K. Guillois,
P. Delichere, J. M. Basset, J. P. Candy, V. Caps, C. Coperet,
´
A. Lesage and L. Emsley, J. Am. Chem. Soc., 2009, 131, 14667;
M. Boualleg, K. Guillois, B. Istria, L. Burel, L. Veyre, J. M. Basset,
C. Thieuleux and V. Caps, Chem. Commun., 2010, 46, 5361.
5 P. Christopher and S. Linic, J. Am. Chem. Soc., 2008, 130, 11264.
6 R. L. Cropley, F. J. Williams, A. J. Urquhart, O. P. H. Vaughan,
M. S. Tikhov and R. M. Lambert, J. Am. Chem. Soc., 2005, 127,
6069; F. J. Williams, R. L. Cropley, O. P. H. Vaughan,
A. J. Urquhart, M. S. Tikhov, C. Kolczewski, K. Hermann and
R. M. Lambert, J. Am. Chem. Soc., 2005, 127, 17007; D. Torres,
N. Lopez, F. Illas and R. M. Lambert, J. Am. Chem. Soc., 2005,
127, 10774.
FePt@Cu NWs could be recycled multiple times without
obvious catalytic degradation (Fig. 2 and Table S3). For this,
we selected o-xylene as the solvent and molecular oxygen as
the oxidant, at 100 1C for 24 h. The FePt@Cu catalyst was
collected by centrifugation and washed several times with
ethanol. No significant loss of catalytic activity was observed,
and the FePt@Cu NW structure was retained as confirmed by
TEM (Fig. S4).
FePt NWs showed no catalytic activity for the epoxidation
reaction at the same conditions, which indicated the activity
arose from the copper on the surface of the catalyst. FePt@Cu
NWs had a higher selectivity than that for Cu nanoparticles
(Fig. S5). When cis-stilbene was used as the reactant, the yield
and stereoselectivity of the oxide product were 80.2% and
60.6/39.4 (cis/trans), respectively.
7 C. Wang, Y. L. Hou, J. Kim and S. H. Sun, Angew. Chem., Int. Ed.,
2007, 46, 6333.
8 Q. Liu, Z. Yan, N. L. Henderson, J. C. Bauer, D. W. Goodman,
J. D. Batteas and R. E. Schaak, J. Am. Chem. Soc., 2009, 131,
5720.
9 X. Liu, A. Wang, X. Wang, C. Y. Mouc and T. Zhang, Chem.
Commun., 2008, 3187; G. Gupta, D. A. Slanac, P. Kumar,
J. D. Wiggins-Camacho, X. Wang, S. Swinnea, K. L. More,
S. Dai, K. J. Stevenson and K. P. Johnston, Chem. Mater., 2009,
21, 4515.
10 G. A. Gelves, Z. T. M. Murakami, M. J. Krantz and J. A. Haber,
J. Mater. Chem., 2006, 16, 3075; N. N. Kariuki, X. Wang,
J. R. Mawdsley, M. S. Ferrandon, S. G. Niyogi, J. T. Vaughey
and D. J. Myers, Chem. Mater., 2010, 22, 4144; Y. C. Zhang,
J. Y. Tang, G. L. Wang, M. Zhang and X. Y. Hu, J. Cryst. Growth,
2006, 294, 278.
11 B. S. Lane and K. Burgess, Chem. Rev., 2003, 103, 2457.
12 S. Bawaked, N. F. Dummer, N. Dimitratos, D. Bethell, Q. He,
C. J. Kiely and G. J. Hutchings, Green Chem., 2009, 11, 1037;
J. Q. Yu and E. J. Corey, Org. Lett., 2002, 4, 2727; Q. H. Zhang,
Y. Wang, S. Itsuki, T. Shishido and K. Takehira, J. Mol. Catal. A:
Chem., 2002, 188, 189; V. Caps and S. C. Tsang, Appl. Catal., A,
2003, 248, 19; K. M. Parida and S. Mallick, Catal. Commun., 2009,
11, 51.
13 I. W. C. E. Arends and R. A. Sheldon, Appl. Catal., A, 2001, 212,
175.
Fig. 2 Recovery and reuse of the FePt@Cu catalyst.
c
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 8591–8593 8593