Paper
RSC Advances
of catalyst caused by the blocking of organic substances, and
the formation of carbonate like species on the surface of cata-
2 F. Li, W. Li, J. Li, W. Xue, Y. Wang and X. Zhao, Appl. Catal.,
A, 2014, 475, 355.
3 B. Han, W. Zhao, X. Qin, Y. Li, Y. Sun and W. Wei, Catal.
Commun., 2013, 33, 38.
4 J. Gao, H. Li, Y. Zhang and W. Fei, Catal. Today, 2009, 148,
378.
5 J. Wang, Q. Li, W. Dong, M. Kang, X. Wang and S. Peng, Appl.
Catal., A, 2004, 261, 191.
6 Y. Wang and B. Liu, Catal. Sci. Technol., 2015, 5, 109.
7 R. Ju ´a reza, H. Pennemann and H. Garc ´ı a, Catal. Today, 2011,
159, 25.
8 F. Li, J. Miao, Y. Wang and X. Zhao, Ind. Eng. Chem. Res.,
2006, 45, 4892.
25
lyst. Moreover, XRD pattern of Zn/Al/Ce2.5 aer the cyclic test
is almost the same as the uncalcined precursor (Fig. S9†), which
conrms the reconstruction of the hydrotalcite structure due to
43
its memory effect. As a result, the catalytic performance of Zn/
Al/Ce2.5 may be recovered via simple thermal annealing.
The catalytic performance and cycling stability of the present
Zn/Al/Ce2.5 are superior to previously reported heterogeneous
2
catalysts, such as Zn(OAc) /SiO , ZnO–TiO (ref. 9) and ordered
2
2
2
10
AlSBA-15. As far as we know, there is no report for the reaction
of DMC and amine for the synthesis of carbamates (e.g. MPC)
catalyzed over mixed oxides derived from hydrotalcite-like
precursors. Considering the merits of the HTlcs precursors,
and the advantages of feasible preparation, low cost, high
9 F. Li, Y. Wang, W. Xue and X. Zhao, J. Chem. Technol.
Biotechnol., 2009, 84, 48.
catalytic performance and stability of the catalyst presented in 10 N. Lucas, A. P. Amrute, K. Palraj, G. V. Shanbhag, A. Vinu and
this preliminary investigation, this kind of catalyst would be S. B. Halligudi, J. Mol. Catal. A: Chem., 2008, 295, 29.
promising material for the green synthesis of carbamates. We 11 Y. Pei, H. Li, H. Liu and Y. Zhang, Catal. Today, 2009, 148,
suspect that the catalytic performance could be further 373.
improved via optimizing the composition, specic surface area, 12 F. Qin, Q. Li, J. Wang, Y. Feng, M. Kang, Y. Zhu and X. Wang,
pore size, and surface acid–base properties, etc.
Catal. Lett., 2008, 126, 419.
13 Q. Zhang, H. Yuan, N. Fukaya, H. Yasuda and J.-C. Choi,
Green Chem., 2017, 19, 5614.
4
Conclusions
14 Q. Zhang, H. Yuan, N. Fukaya and J.-C. Choi, ACS Sustainable
Chem. Eng., 2018, 6, 6675.
In conclusion, herein, we demonstrated the design and fabri-
cation of Zn/Al/Ce mixed oxides as effective and recoverable 15 Z. Zhang, S. Liu, L. Zhang, S. Yin, G. Yang and B. Han, Chem.
heterogeneous catalyst for MPC synthesis via DMC aminolysis. Commun., 2018, 54, 4410.
Zn/Al/Ce hydrotalcite-like precursors and the resulting catalysts 16 S. Laursen, D. Combita, A. B. Hungr ´ı a, M. Boronat and
were characterized by means of XRD, BET, SEM and XPS, which A. Corma, Angew. Chem., Int. Ed., 2012, 51, 4190.
suggested that strong interactions within the mixed oxides 17 J. R. Cabrero-Antonino, R. Adam, K. Junge and M. Beller,
could form via the addition of appropriate amount of cerium. Catal. Sci. Technol., 2016, 6, 7956.
Thus, Zn/Al/Ce2.5 showed high DMC aminolysis activity giving 18 J. R. Cabrero-Antonino, R. Adam, J. W ¨a rn ˚a , D. Yu. Murzin
aniline conversion of 95.8%, MPC selectivity of 81.6% and MPC and M. Beller, Chem. Eng. J., 2018, 351, 1129.
yield of 78.2%. Moreover, as a heterogeneous catalyst, Zn/Al/ 19 T. Baba, A. Kobayashi, Y. Kawanami, K. Inazu, A. Ishikawa,
Ce2.5 also exhibited excellent stability for MPC synthesis. This
preliminary research provided an alternative and simple
T. Echizenn, K. Murai, S. Aso and M. Inomata, Green
Chem., 2005, 7, 159.
method for the developing of high performance heterogeneous 20 E. Reixach, N. Bonet, F. X. Rius-Ruiz, S. Wershofen and
catalyst that can be used for the green synthesis of carbamates.
A. Vidal-Ferran, Ind. Eng. Chem. Res., 2010, 49, 6362.
1 E. Reixach, R. M. Haak, S. Wershofen and A. Vidal-Ferran,
Ind. Eng. Chem. Res., 2012, 51, 16165.
2 X. Zhao, L. Kang, N. Wang, H. An, F. Li and Y. Wang, Ind.
Eng. Chem. Res., 2012, 51, 11335.
3 A. B. Shivarkar, S. P. Gupte and R. V. Chaudhari, J. Mol.
Catal. A: Chem., 2004, 223, 85.
4 D. Sun, S. Xie, J. Deng, C. Huang, E. Ruckenstein and
Z. Chao, Green Chem., 2010, 12, 483.
2
2
2
2
Conflicts of interest
There are no conicts to declare.
Acknowledgements
We are grateful for grants from Technology Foundation of the
Science and Technology Department of Guizhou Province (No. 25 A. Primo, E. Aguado and H. Garcia, ChemCatChem, 2013, 5,
2017]1208), the Natural Science Research Project of Education 1020.
Department of Guizhou Province ([2016]093), and Natural 26 M. Tamura, K. Noro, M. Honda, Y. Nakagawa and
Science Foundation of Shanxi Province (No. 201801D121070),
K. Tomishige, Green Chem., 2013, 15, 1567.
Independent Research Project of the State Key Laboratory of 27 G. Fan, S. Luo, T. Fang, Q. Wu, G. Song and J. Li, J. Mol. Catal.
[
Coal Conversion (2018BWZ002).
A: Chem., 2015, 404, 92.
2
2
8 K. A. Alferov, Z. Fu, S. Ye, D. Han, S. Wang, M. Xiao and
Y. Meng, ACS Sustainable Chem. Eng., 2019, 7, 10708.
9 M. Tamura, K. Ito, Y. Nakagawa and K. Tomishige, J. Catal.,
2016, 343, 75.
Notes and references
1
O. Kreye, H. Mutlu and M. A. R. Meier, Green Chem., 2013, 15,
431.
1
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 42474–42480 | 42479