Organic Letters
Letter
Scheme 5. (A) Examination of the Catalytic Activity of Ni(II)
versus Ni(I); (B) Stoichiometric Reactions
REFERENCES
■
(1) For recent reviews, see: (a) Anbarasan, P.; Schareina, T.; Beller, M.
Chem. Soc. Rev. 2011, 40, 5049. (b) Jones, L. H.; Summerhill, N. W.;
Swain, N. A.; Mills, J. E. MedChemComm 2010, 1, 309.
(2) Larcok, R. C. Comprehensive Organic Transformations: A Guide to
Functional Group Preparations, 2nd ed.; VCH: New York, U.S.A, 1999.
(3) Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 2650.
(4) (a) Rosenmund, K. W.; Struck, E. Ber. Dtsch. Chem. Ges. B 1919, 52,
1749. (b) von Braun, J. V.; Manz, G. Liebigs Ann. Chem. 1931, 488, 111.
(5) For selected papers on palladium-catalyzed cyanation of aryl
chlorides, see: (a) Cohen, D. T.; Buchwald, S. L. Org. Lett. 2015, 17, 202.
(b) Senecal, T. D.; Shu, W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013,
52, 10035. (c) Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett.
2011, 13, 648. (d) Schareina, T.; Jackstell, R.; Schulz, T.; Zapf, A.; Cotte,
A.; Gotta, M.; Beller, M. Adv. Synth. Catal. 2009, 351, 643. (e) Schareina,
T.; Zapf, A.; Magerlein, W.; Muller, N.; Beller, M. Tetrahedron Lett. 2007,
̈
̈
48, 1087. (f) Littke, A.; Soumeillant, M.; Kaltenbach, R. F., III; Cherney,
R. J.; Tarby, C. M.; Kiau, S. Org. Lett. 2007, 9, 1711. (g) Sundermeier, M.;
Zapf, A.; Mutyala, S.; Baumann, W.; Sans, J.; Weiss, S.; Beller, M. Chem. -
Eur. J. 2003, 9, 1828. (h) Sundermeier, M.; Zapf, A.; Beller, M. Angew.
Chem., Int. Ed. 2003, 42, 1661. (i) Jin, F.; Confalone, P. N. Tetrahedron
Lett. 2000, 41, 3271.
(6) Copper was known to catalyze cyanation reactions; however, the
scope has been limited to aryl iodides and bromides. For a review, see:
Wen, Q.; Jin, J.; Zhang, L.; Luo, Y.; Lu, P.; Wang, Y. Tetrahedron Lett.
2014, 55, 1271.
under the standard reaction conditions afforded a good yield of
nitrile 2d. These results imply that DMAP may also act as a
coligand.
(7) Cassar, L. J. Organomet. Chem. 1973, 54, C57.
(8) For nickel-catalyzed cyanation of aryl halides, see: (a) Moghaddam,
F. M.; Tavakoli, G.; Rezvani, H. R. Appl. Organomet. Chem. 2014, 28, 750.
(b) Sakakibara, Y.; Sasaki, K.; Okuda, F.; Hokimoto, A.; Ueda, T.; Sakai,
M.; Takagi, K. Bull. Chem. Soc. Jpn. 2004, 77, 1013. (c) Arvela, R. K.;
Leadbeater, N. E. J. Org. Chem. 2003, 68, 9122. (d)Sakakibara, Y.;Ido, Y.;
Sasaki, K.; Sakai, M.; Uchino, N. Bull. Chem. Soc. Jpn. 1993, 66, 2776.
(e) Sakakibara, Y.; Okuda, F.; Shimobayashi, A.; Kirino, K.; Sakai, M.;
Uchino, N.; Takagi, K. Bull. Chem. Soc. Jpn. 1988, 61, 1985. (f) Cassar, L.;
In summary, we have developed the first efficient and general
Ni-catalyzed aromatic cyanation using less toxic Zn(CN)2 as the
cyanide source. The use of challenging hetero(aryl) chlorides as
the substrates, air-stable and low-cost nickel salts as the
precatalyst, normal phosphine as the ligand in conjunction with
wide functional group tolerance, and mild reaction conditions
makes this approach one of the most attractive and practical
methods. Preliminary mechanistic studies indicate that a
diphosphine-ligated arylnickel(II) chloride complex not only
serves as the reaction intermediate but also displays high catalytic
activity for this transformation. Further investigations on the
detailed reaction mechanism and application of this chemistry are
in progress.
Foa,
̀
M.; Montanari, F.; Marinelli, G. P. J. Organomet. Chem. 1979, 173,
335. (g) Cassar, L.; Ferrara, S.; Foa,
́
M. Homogeneous Catalysis II”, Adv.
Chem. Ser. 132. Adv. Chem. Ser. 1974, 132, 252. For nickel-catalyzed
cyanation of mesylates, see: (h) Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org.
Chem. 1995, 60, 6895. Fornickel-catalyzed cyanationofaryltriflates, see:
(i) Chambers, M. R. I.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1
1989, 1365.
(9) See ref 12 in ref 8e.
ASSOCIATED CONTENT
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
■
S
̀
(11) (a) Foa, M.; Cassar, L. J. Chem. Soc., Dalton Trans. 1975, 2572.
(b) Green, R. A.; Hartwig, J. F. Angew. Chem., Int. Ed. 2015, 54, 3768.
(12) Klinkenberg, J. L.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 5758.
(13) Bhatnagar, A. S. Breast Cancer Res. Treat. 2007, 105, 7.
Experimental details and spectroscopic data; X-ray
crystallography of NiCl2(DMAP)4·2H2O (PDF)
Crystallographic data (CIF)
(14) For recent reports involving Ni(0)/Ni(II) catalysis, see: (a) Yin,
G.; Kalvet, I.; Englert, U.; Schoenebeck, F. J. Am. Chem. Soc. 2015, 137,
4164. (b) Ge, S.; Green, R. A.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136,
1617. For recentreports involvingNi(I)/Ni(III) catalysis, see:(c) Jones,
G. D.; McFarland, C.; Anderson, T. J.; Vicic, D. A. Chem. Commun. 2005,
4211. (d) Guard, L. M.; Beromi, M. M.; Brudvig, G. W.; Hazari, N.;
Vinyard, D. J. Angew. Chem., Int. Ed. 2015, 54, 13352.
(15) (a) Standley, E. A.; Smith, S. J.; Muller, P.; Jamison, T. F.
Organometallics 2014, 33, 2012. (b) Park, N. H.; Teverovskiy, G.;
Buchwald, S. L. Org. Lett. 2014, 16, 220.
(16) Very recently, Ley et al. found that boronic esters could be
activated by DMAP; see: Lima, F.; Kabeshov, M. A.; Tran, D. N.;
Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V.
Angew. Chem., Int. Ed. 2016, 55, 14085.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
̈
Notes
The authors declare no competing financial interest.
(17) (a) Xiao, Y.-L.; Min, Q.-Q.; Xu, C.; Wang, R.-W.; Zhang, X. Angew.
Chem., Int. Ed. 2016, 55, 5837. (b)Wang, X.;Wang, S.;Xue, W.;Gong, H.
J. Am. Chem. Soc. 2015, 137, 11562.
ACKNOWLEDGMENTS
■
We thank the National Key Research and Development Program
(2016YFA0202900) and the Strategic Priority Research Program
of the Chinese Academy of Sciences (Grant No. XDB20000000),
the National Natural Science Foundation of China (Grant No.
21421091) for financial support.
D
Org. Lett. XXXX, XXX, XXX−XXX