5626
D. Saha et al. / Tetrahedron Letters 51 (2010) 5624–5627
Table 2
Arylation of benzothiazole
2008). D.S. and L.A. are also thankful to CSIR, New Delhi for their
fellowships.
Pd(OAc)2, TBAB
K2CO3, AgOAc
N
S
N
References and notes
Ar
I
Ar
+
MS (4 Å), DMF
120 oC, 18 h
S
1. Jin, Z. Nat. Prod. Rep. 2005, 22, 196–229. and references cited therein.
2. (a) Talley, J. J.; Bertenshaw, S. R.; Brown, D. L.; Carter, J. S.; Graneto, M. J.;
Koboldt, C. M.; Masferer, J. L.; Norman, B. H.; Rogier, D. J., Jr.; Zweifel, B. S.;
Seibert, K. Med. Res. Rev. 1999, 19, 199–208; (b) Almansa, C.; Alfon, J.; de Arriba,
A. F.; Cavalcanti, F. L.; Escamilla, I.; Gomez, L. A.; Miralles, A.; Soliva, R.; Bartoli,
J.; Carceller, E.; Merlos, M.; Rafanell, J. G. J. Med. Chem. 2003, 46, 3463–3475; (c)
Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie, M.; Osakada, K.;
Kawamoto, M.; Ikeda, T. J. Am. Chem. Soc. 2003, 125, 1700–1701.
3. Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102,
1359–1470.
4. (a) Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733–1736;
(b) Lewis, J. C.; Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2008, 130, 2493–2500; (c) Nandakumar, N. S.; Bhanushali, M. J.; Bhor, M. D.;
Bhanage, B. M. Tetrahedron Lett. 2008, 49, 1045–1048; (d) Dogan, O.; Gurbuz,
N.; Ozdemir, I.; Cetinkaya, B.; Sahin, O.; Buyukgungor, O. Dalton Trans. 2009,
7087–7093; (e) Turner, G.; Morris, J. A.; Greaney, M. F. Angew. Chem., Int. Ed.
2007, 46, 7996–8000; (f) Yokooji, A.; Okazawa, T.; Satoh, T.; Miura, M.;
Nomura, M. Tetrahedron 2003, 59, 5685–5689; (g) Gallagher, W. P.; Maleczka,
R. E., Jr. J. Org. Chem. 2003, 68, 6775–6779; (h) Pivsa Art, S.; Satoh, T.;
Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467–473;
(i) Yoshizumi, T.; Tsurugi, H.; Satoh, T.; Miura, M. Tetrahedron Lett. 2008, 49,
1598–1600; (j) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404–
12405.
Entry
Ar
C6H5
3-Cl–C6H4
4-Cl–C6H4
3-Me–C6H4
4-Me–C6H4
3-MeO–C6H4
4-MeO–C6H4
3-F–C6H4
Yielda (%)
Ref.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
81
72
83
80
85
75
78
81
70
84
82
72
79
73
70
84
81
75
78
4a
11
4a
4a
4a
12
4a
13
14
4a
—
4-Br–C6H4
3-F3C–C6H4
4-F3CO–C6H4
3,5-Me2–C6H3
4-NC–C6H4
4-O2N–C6H4
4-MeOC–C6H4
4-EtO2C–C6H4
1-Naphthyl
2-Pyridyl
—
4a
14
4d
—
4a
14
4a
5. (a) Astruc, D. Inorg. Chem. 2007, 46, 1884–1894; (b) Astruc, D.; Lu, F.; Aranzaes,
J. R. Angew. Chem., Int. Ed. 2005, 44, 7852–7872; (c) Polshettiwar, V.; Baruwati,
B.; Varma, R. S. Green Chem. 2009, 11, 127–131; (d) Reetz, M. T.; Westermann,
E. Angew. Chem., Int. Ed. 2000, 39, 165–168; (e) Durand, J.; Teuma, E.; Gomez, M.
Eur. J. Inorg. Chem. 2008, 3577–3586.
3-Pyridyl
a
Yields refer to those of purified isolated products charac-
terized by spectroscopic data (IR, 1H NMR and 13C NMR).
6. Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757–3778.
7. (a) Ranu, B. C.; Chattopadhyay, K. Org. Lett. 2007, 9, 2409–2412; (b) Ranu, B.
C.; Chattopadhyay, K.; Adak, L. Org. Lett. 2007, 9, 4595–4598; (c) Ranu, B. C.;
Dey, R.; Chattopadhyay, K. Tetrahedron Lett. 2008, 49, 3430–3432; (d) Dey,
R.; Chattopadhyay, K.; Ranu, B. C. J. Org. Chem. 2008, 73, 9461–9464; (e)
Saha, D.; Chattopadhyay, K.; Ranu, B. C. Tetrahedron Lett. 2009, 50, 1003–
1006; (f) Adak, L.; Chattopadhyay, K.; Ranu, B. C. J. Org. Chem. 2009, 74,
3982–3985; (g) Adak, L.; Bhadra, S.; Ranu, B. C. Tetrahedron Lett. 2010, 51,
3811–3814.
N
Ar
S
Ar-X
Pd(0)
8. Tong, X.; Zhao, Y.; Huang, T.; Liu, H.; Liew, K. Y. Appl. Surf. Sci. 2009, 255, 9463–
9468.
9. Representative procedure for the reaction of benzothiazole and iodobenzene (Table
N
S
PdAr
2, entry 1):
a mixture of iodobenzene (245 mg, 1.2 mmol), benzothiazole
ArPdX
(135 mg, 1 mmol), Pd(OAc)2 (15 mg, 6.6 mol %), tetrabutylammonium bromide
(350 mg, 1.08 mmol), potassium carbonate (300 mg, 2.17 mmol), silver acetate
N
S
B
KHCO3
(332 mg, 2 mmol), activated (preheated for 5 min in domestic microwave
+
AgOAc
+
0
oven) 4 ÅA MS (0.75 g) in DMF (4 mL) was heated with stirring at 125 °C under
argon for 18 h (TLC). The reaction mixture was extracted with Et2O (4 ꢂ 15 mL).
The extract was washed with water, brine and then dried (Na2SO4).
Evaporation of solvent left the crude product, which was purified by column
chromatography over silica gel (60–120 mesh) (hexane/ether 98:8) to provide
AcOK
N
PdAr
K2CO3
AgX
H
S
_
A
OAc
2-phenylbenzothiazole (171 mg, 81%) as a white solid. The mp and
spectroscopic data (IR, 1H NMR and 13C NMR) of this compound are in good
agreement with those reported earlier.4a
Figure 3. Plausible mechanism.
This procedure was followed for the synthesis of all the products listed in Table
2. Many of these products are known compounds and were identified by
comparison of their spectra with those reported earlier (see references in Table
2). The new compounds were characterized by their IR, 1H NMR and 13C NMR
and HRMS spectroscopic data which are provided below in order of their
entries in Table 2.
The role of AgOAc in this reaction is also very significant. Possibly,
Ag(I) abstracts the Iꢁ from the Pd(II) complex thereby generating an
electrophilic-cationic-Pd intermediate15 and thus accelerates the
reaction. Moreover, Iꢁ might have an inhibitory effect and Ag+ min-
imizes this effect by removing Iꢁ from the system.4e
In conclusion, we have developed a simple and efficient palla-
dium(0) nanoparticles-catalyzed direct arylation and heteroaryla-
tion of benzothiazole based on C–H activation under ligand-free
condition. This protocol provides an easy access to a wide range
of 2-substituted benzothiazoles.
2-(4-(Trifluoromethoxy)phenyl)benzo[d]thiazole (Table 2, entry 11): white solid;
mp 97 °C; IR (KBr) 3059, 2993, 1913, 1607, 1593, 1556, 1516, 1483, 1437, 1410,
1273, 1257, 1224, 1203, 1157 cmꢁ1 1H NMR (300 MHz, CDCl3) d 7.30–7.41(m,
;
3H), 7.46–7.49 (m, 1H), 7.89 (d, J = 7.95 Hz, 1H), 8.05–8.12 (m, 3H); 13C NMR
(75 MHz, CDCl3) d 121.3, 121.8, 122.2, 123.5, 125.6 (2C), 126.6, 129.2 (2C),
132.3, 135.3, 151.1, 154.2, 166.3; HRMS Calcd for
296.0357; Found 296.0351.
C
14H8F3NOS (M+H)+
2-(3,5-Dimethylphenyl)benzo[d]thiazole (Table 2, entry 12): yellow liquid; IR
(neat) 3059, 3030, 3009, 2957, 2918, 2862, 2733, 1716, 1684, 1601, 1558, 1506,
1456, 1435 cmꢁ1 1H NMR (500 MHz, CDCl3) d 2.39 (s, 6H), 7.13 (1H, s), 7.38 (t,
;
J = 8 Hz, 1H), 7.49 (t, J = 8.5 Hz), 7.73 (s, 2H), 7.90 (d, J = 8 Hz, 1H), 8.09 (d,
J = 8 Hz, 1H); 13C NMR (125 MHz, CDCl3) d 21.3 (2C), 121.7, 123.2, 125.2, 125.5
(2C), 126.4, 132.9, 133.5, 135.1, 138.9 (2C), 154.1, 168.7; HRMS Calcd for
To the best of our knowledge, this is the first report of benzothi-
azole arylation using palladium(0) nanoparticles. Significantly,
Pd(0) is not effective for this reaction and this demonstrates the
potential and distinction of Pd(0) nanoparticles over Pd(0).
C
15H13NS (M+H)+ 240.0847; Found 240.0843.
Ethyl-4-(benzo[d]thiazole-2-yl)benzoate (Table 2, entry 16): white solid; mp
118 °C; IR (KBr) 3057, 3022, 2960, 2926, 2903, 2872, 2854, 1709, 1666, 1607,
1479, 1452, 1435, 1406 cmꢁ1 1H NMR (500 MHz, CDCl3) d 1.42 (t, J = 6.75 Hz,
;
3H), 4.40 (t, J = 6.75 Hz, 2H), 7.39 (t, J = 7 Hz, 1H), 7.50 t, J = 7.5 Hz, 1H), 7.66 (d,
J = 8.0 Hz, 2H), 7.89 (d, J = 8.0 Hz, 1H), 8.08–8.13 (m, 3H); 13C NMR (125 MHz,
CDCl3) d 14.4, 61.3, 121.8, 123.7, 125.8, 126.7, 127.4 (2C), 130.3 (2C), 135.4,
137.4, 144.4, 154.2, 166.4, 166.7; HRMS Calcd for
284.0745; Found 284.0741.
Acknowledgments
C
16H13NO2S (M+H)+
We are pleased to acknowledge the financial support from DST,
Govt. of India under J. C. Bose fellowship to B.C.R. (SR/S2/JCB-11/