10.1002/adsc.201901553
Advanced Synthesis & Catalysis
obtained using a Bruker DRX 400 spectrometer at
400 MHz, 100 MHz, 162 MHz and 376 MHz
respectively. Chemical shifts are reported in units of
parts per million (ppm) downfield from
tetramethylsilane (TMS), and all coupling constants
are reported in hertz. The infrared (IR) spectra were
measured on a Nicolet iS10 FTIR spectrometer with 4
cm−1 resolution and 32 scans between wavenumber of
4000 cm−1 and 400 cm−1. High Resolution Mass
spectra were taken on AB QSTAR Pulsar mass
spectrometer. Melting points were obtained on a XT-4
melting-point apparatus and were uncorrected.
Bennett, M. Gotte and Y. S. Tsantrizos, J. Med. Chem.,
2014, 57, 7435-7449; (e) A. George and A. Veis, Chem.
Rev., 2008, 108, 4670-4693; (f) D. M. Karl, Nature,
2000, 406, 31-33.
[2] (a) M. Y. Ye, G. Y. Yao, Y. M. Pan, Z. X. Liao, Y.
Zhang and H. S. Wang, Eur. J. Med. Chem., 2014, 83,
116-128; (b) N. Ali, S. Zakir, M. Patel and M.
Farooqui, Eur. J. Med. Chem., 2012, 50, 39-43; (c) S.
Bhagat, P. Shah, S. K. Garg, S. Mishra, P. Kamal Kaur,
S. Singh and A. K. Chakraborti, Med. Chem. Commun.,
2014, 5, 665-670; (d) S. A. R. Mulla, M. Y. Pathan, S.
S. Chavan, S. P. Gample and D. Sarkar, RSC Advances,
2014, 4.
General Procedure for Radical Coupling of
ketimines and phosphorous oxychloride.
[3] (a) G. Forlani, L. Berlicki, M. Duo, G. Dziedziola, S.
Giberti, M. Bertazzini and P. Kafarski, J. Agric. Food.
Chem., 2013, 61, 6792-6798; (b) G. Forlani, A.
Occhipinti, Ł. Berlicki, G. Dziedziola, A. Wieczorek
and P. Kafarsk, J. Agric. Food Chem., 2008, 56,
3193-3199; (c) M.-H. Chen, Z. Chen, B.-A. Song, P. S.
Bhadury, S. Yang, X.-J. Cai, D.-Y. Hu, W. Xue and S.
Zeng, J. Agric. Food Chem., 2009, 57, 1383-1388; (d)
N. Long, X.-J. Cai, B.-A. Song, S. Yang, Z. Chen, P. S.
Bhadury, D.-Y. Hu, L.-H. Jin and W. Xue, J. Agric.
Food Chem., 2008, 56, 5242-5246.
Under a nitrogen atmosphere in a glove box, an
oven-dried reaction vial equipped with a stir bar was
charged with diphenylphosphinic chloride 2 (0.2
mmol) and 1.0 mL dry THF was added to the vial by
a “Titan” brand 1000 μL pipettor, then added the
N-benzyl ketamine 1 (0.4 mmol) and pure (solid)
KN(SiMe3)2 (0.6 mmol). The reaction mixture turned
dark purple on addition of the base. The vial was then
sealed with a cap, removed from the glove box, and
stirred for 1 h at room temperature. The reaction
mixture was then opened to air, quenched with three
drops of H2O, diluted with 5 mL of ethyl acetate, and
filtered over a 2 cm pad of MgSO4 and silica. The pad
was rinsed with ethyl acetate (3 X 5 mL), and the
combined solutions were concentrated in vacuo. The
crude material was loaded onto a deactivated silica
gel column and separated by flash chromatography
(petroleum ether: ethyl acetate = 10:1 to 5:1). Further
purification was performed on an Agilent HPLC 1260
system using acetonitrile:H2O (75:25 vol./vol.) as
mobile phase and flow rate of 3.5 mL/min at 254 nm
[4] J. P. Genet, J. Uzifl and S. Juge, Tetrahedron Lett.,
1988, 29, 4559-4562.
[5] (a) O. Basle and C. J. Li, Chem. Commun., 2009,
4124-4126; (b) Z.-J. Wu, F. Su, W. Lin, J. Song, T.-B.
Wen, H.-J. Zhang and H.-C. Xu, Angew. Chem. Int. Ed.,
2019, 58, 16770-16774; (c) L. Bernardi, W. Zhuang
and K. A. Jørgensen, J. Am. Chem. Soc., 2005, 127,
5772-5773; (d) S. Hanessian and Y. L. Bennani,
Synthesis, 1994, 1272-1274; (e) S. E, Denmark, N.
Chatani and S. V. Pansare, Tetrahedron, 1992, 48,
2191-2208; (f) W. Han and A. R. Ofial, Chem.
Commun., 2009, 6023-6025; (g) M. X. Cheng, R. S.
Ma, Q. Yang and S. D. Yang, Org. Lett., 2016, 18,
3262-3265; (h) G. Hu, W. Chen, D. Ma, Y. Zhang, P.
Xu, Y. Gao and Y. Zhao, J. Org. Chem., 2016, 81,
1704-1711; (i) L. L. Mao, C. C. Li, Q. Yang, M. X.
Cheng and S. D. Yang, Chem. Commun., 2017, 53,
4473-4476; (j) M. R. Patil, N. P. Dedhia, A. R. Kapdi
and A. V. Kumar, J. Org. Chem., 2018, 83, 4477-4490;
(k) B. Lin, S. Shi, R. Lin, Y. Cui, M. Fang, G. Tang
and Y. Zhao, J. Org. Chem., 2018, 83, 6754-6761.
[6] S. L. McDonald and Q. Wang, Angew. Chem. Int.
Ed., 2014, 53, 1867-1871.
to
give
(((diphenylmethylene)amino)(phenyl)methyl)dipheny
lphosphine oxide.
Acknowledgements
This work was supported by grants from the NSFC
(21662043, 21572197 and U1702286), the Program
for Changjiang Scholars and Innovative Research
Teams in Universities (IRT17R94) and IRTSTYN, the
NSF of Yunnan Province (2019FY003010), the
DongLu Scholar and the YunLing Scholar Program.
[7] M. J. O’Donnell, L. K. Lawley, P. B. Pushpavanam,
A. Burger, F. G. Bordwell and X.-M. Zhang,
Tetrahedron Lett., 1994, 35, 6421-6424.
[8] R. M. N. Kalla, J. Bae and I. Kim, New J. Chem.,
2017, 41, 6653-6660.
[9] M. Huang, J. Dai, X. Cheng and M. Ding, Org. Lett.,
2019, 21, 7759-7762.
References
[10] (a) Y. R. Chen and W. L. Duan, J. Am. Chem. Soc.,
2013, 135, 16754-16757; (b) B. Zhang, C. G. Daniliuc
and A. Studer, Org. Lett., 2014, 16, 250-253; (c) J.
Yang, T. Chen and L. B. Han, J. Am. Chem. Soc., 2015,
[1] (a) H. Ni, W. L. Chan and Y. Lu, Chem. Rev., 2018,
118, 9344-9411; (b) M. Dutartre, J. Bayardon and S.
Juge, Chem. Soc. Rev., 2016, 45, 5771-5794; (c) S.
Montel, T. Jia and P. J. Walsh, Org. Lett., 2014, 16,
130-133; (d) C. M. Lacbay, J. Mancuso, Y. S. Lin, N.
5
This article is protected by copyright. All rights reserved.