Paper
Organic & Biomolecular Chemistry
ing glycoclusters displayed the expected AIE effect. However,
the blue fluorescence from cells and bacteria overlapped, pre-
venting the application of the TPE-based glycoclusters as
imaging agents. ITC binding studies with LecA and LecB as
the two proteins involved in the adhesion of Pseudomonas
aeruginosa to host cells provided strong binding properties
towards both lectins with Kd values in the nanomolar range.
Further evaluation of the TPE-based glycoclusters as anti-
adhesive agents proved less encouraging, since only a very
6 Y. Huang, J. Wang and Z. Wei, Chem. Commun., 2014, 50,
8343–8345.
7 X. Wang, O. Ramström and M. Yan, Anal. Chem., 2010, 82,
9082–9089.
8 D. Grünstein, M. Maglinao, R. Kikkeri, M. Collot,
K. Barylyuk, B. Lepenies, F. Kamena, R. Zenobi and
P. H. Seeberger, J. Am. Chem. Soc., 2011, 133, 13957–13966.
9 Y. Wang, J. C. Gildersleeve, A. Basu and M. B. Zimmt,
J. Phys. Chem. B, 2010, 114, 14487–14494.
limited decrease of adhesion could be observed (20%) for 10 K. Petkau, A. Kaeser, I. Fischer, L. Brunsveld and A. P. H.
the fucosylated glycocluster. These TPE-based glycoclusters J. Schenning, J. Am. Chem. Soc., 2011, 133, 17063–17071.
therefore appear as high-affinity ligands of the LecA and 11 K.-R. Wang, H.-W. An, F. Qian, Y.-Q. Wang, J.-C. Zhang and
LecB bacterial lectins, yet their AIE fluorescence properties X.-L. Li, RSC Adv., 2013, 3, 23190–23196.
could not be exploited for further biomedical applications. 12 M. L. Lepage, A. Mirloup, M. Ripoll, F. Stauffert,
Nevertheless, improvement of the biological properties of
such glycoclusters can be readily performed through modify-
A. Bodlenner, R. Ziessel and P. Compain, Beilstein J. Org.
Chem., 2015, 11, 659–667.
ing the valency to increase the affinity and anti-adhesive pro- 13 M. Donnier-Maréchal, N. Galanos, T. Grandjean, Y. Pascal,
perties. Improvements can also be achieved by modifying
the functional groups on the TPE scaffold to provide fluo-
rescent probes with different emission properties that do
D.-K. Ji, L. Dong, E. Gillon, X.-P. He, A. Imberty, E. Kipnis,
R. Dessein and S. Vidal, Org. Biomol. Chem., 2017, 15,
10037–10043.
not overlap with biological samples through a red-shifting 14 Y. Liu, D.-K. Ji, L. Dong, N. Galanos, Y. Zang, J. Li, S. Vidal
strategy.
and X.-P. He, Chem. Commun., 2017, 53, 11937–11940.
15 T. Sanji, K. Shiraishi, M. Nakamura and M. Tanaka, Chem.
– Asian J., 2010, 5, 817–824.
16 J.-X. Wang, Q. Chen, N. Bian, F. Yang, J. Sun, A.-D. Qi, C.-G. Yan
and B.-H. Han, Org. Biomol. Chem., 2011, 9, 2219–2226.
17 Q. Chen, N. Bian, C. Cao, X.-L. Qiu, A.-D. Qi and B.-H. Han,
Chem. Commun., 2010, 46, 4067–4069.
Conflicts of interest
There are no conflicts to declare.
18 T. Kato, A. Kawaguchi, K. Nagata and K. Hatanaka,
Biochem. Biophys. Res. Commun., 2010, 394, 200–204.
19 S. Cecioni, A. Imberty and S. Vidal, Chem. Rev., 2015, 115,
525–561.
Acknowledgements
The authors thank the Université Claude Bernard Lyon 1,
Université Grenoble Alpes and the CNRS for financial support. 20 X.-M. Hu, Q. Chen, J.-X. Wang, Q.-Y. Cheng, C.-G. Yan,
Vaincre la Mucoviscidose is gratefully acknowledged for
financial support under grant number RF20160501652. A. I.
J. Cao, Y.-J. He and B.-H. Han, Chem. – Asian J., 2011, 6,
2376–2381.
acknowledges support from the ANR projects Glyco@Alps 21 Q. Qi, Y. Liu, X. Fang, Y. Zhang, P. Chen, Y. Wang, B. Yang,
(ANR-15-IDEX-02) and Labex ARCANE (ANR-11-LABX-003). Y. P.
is grateful to the Région Auvergne-Rhône-Alpes (ARC 1 Santé).
B. Xu, W. Tian and S. X.-A. Zhang, RSC Adv., 2013, 3, 7996–
8002.
Dr A. Berlioz-Barbier and C. Duchamp are gratefully acknowl- 22 C. Li, X. Luo, W. Zhao, C. Li, Z. Liu, Z. Bo, Y. Dong,
edged for mass spectrometry analyses. M.-Q. F. and Y. Q. Dong and B. Z. Tang, New J. Chem., 2013, 37, 1696–1699.
X.-P. H. are grateful to the National Natural Science 23 J. Wu, S. Sun, X. Feng, J. Shi, X.-Y. Hu and L. Wang, Chem.
Foundation of China (Grant No. 21722801).
Commun., 2014, 50, 9122–9125.
24 S. Wang, N. Galanos, A. Rousset, K. Buffet, S. Cecioni,
D. Lafont, S. P. Vincent and S. Vidal, Carbohydr. Res., 2014,
395, 15–18.
25 S. Cecioni, D. Goyard, J.-P. Praly and S. Vidal, Methods Mol.
Biol., 2012, 808, 57–68.
26 S. Cecioni, M. Almant, J.-P. Praly and S. Vidal, Synthesis of
Azido-Functionalized Carbohydrates for the Design of
Glycoconjugates, in Carbohydrate Chemistry: Proven
Synthetic Methods, ed. P. Kováč, CRC Press, Boca Raton,
2012, vol. 1, pp. 175–180.
Notes and references
1 Y. M. Chabre and R. Roy, Chem. Soc. Rev., 2013, 42, 4657–
4708.
2 K.-R. Wang, H.-W. An, Y.-Q. Wang, J.-C. Zhang and X.-L. Li,
Org. Biomol. Chem., 2013, 11, 1007–1012.
3 C. Xue, S. P. Jog, P. Murthy and H. Liu, Biomacromolecules,
2006, 7, 2470–2474.
4 K.-R. Wang, Y.-Q. Wang, H.-W. An, J.-C. Zhang and X.-L. Li, 27 J. L. Xue, S. Cecioni, L. He, S. Vidal and J.-P. Praly,
Chem. – Eur. J., 2013, 19, 2903–2909. Carbohydr. Res., 2009, 344, 1646–1653.
5 R. L. Phillips, I.-B. Kim, L. M. Tolbert and U. H. F. Bunz, 28 M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952–
J. Am. Chem. Soc., 2008, 130, 6952–6954.
3015.
8808 | Org. Biomol. Chem., 2018, 16, 8804–8809
This journal is © The Royal Society of Chemistry 2018