Journal of the American Chemical Society
Communication
decomposition of reported NHC nitrous oxides that affords 3a
AUTHOR INFORMATION
1
1
and N2. Interestingly, EPR analysis revealed that sparse
amounts of NO released from 2a upon thermolysis was
captured by 1a or 1b to form 2a or 2b, respectively, in benzene
Author Contributions
*
(
Figure S1 and Supporting Information). The complete
∥
J.P., H.S., and Y.K. contributed equally to this work.
mechanistic details regarding the thermolysis of 2a are currently
being investigated.
Notes
The cyclic voltammogram of 2a in 0.1 M Bu NPF MeCN
The authors declare the following competing financial
interest(s): A patent application has been led through
POSTECH and IBS on methods and reagents presented in
this manuscript.
4
6
solution shows a reversible one-electron oxidation at E1/2
=
+
0.327 V versus Ag/AgCl (Figure 3 and Supporting
ACKNOWLEDGMENTS
■
(
This work was supported by the Institute for Basic Science
IBS; CA1303) in Korea. We thank Mr. Greg Boursalian and
Prof. Byoung-Yong Chang for helpful discussion, and Dr. Yumi
Yakiyama for assistance with EPR experiments.
REFERENCES
■
(
2
1) (a) Richter-Addo, G. B.; Legzdins, P.; Burstyn, J. Chem. Rev.
002, 102, 857. (b) Wang, P. G.; Xian, M.; Tang, X. P.; Wu, X. J.;
Wen, Z.; Cai, T. W.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091.
(c) McCleverty, J. A. Chem. Rev. 2004, 104, 403. (d) Mocellin, S.;
Bronte, V.; Nitti, D. Med. Res. Rev. 2007, 27, 317. (e) Yamamoto, T.;
Bing, R. J. Proc. Soc. Exp. Biol. Med. 2000, 225, 200. (f) Riccio, D. A.;
Schoenfisch, M. H. Chem. Soc. Rev. 2012, 41, 3731. (g) Carpenter, A.
W.; Schoenfisch, M. H. Chem. Soc. Rev. 2012, 41, 3742. (h) Coneski, P.
N.; Schoenfisch, M. H. Chem. Soc. Rev. 2012, 41, 3753. (i) Naghavi,
N.; de Mel, A.; Alavijeh, O. S.; Cousins, B. G.; Seifalian, A. M. Small
Figure 3. Cyclic voltammogram of 2a and 2b.
2
013, 9, 22. (j) Kim, J.; Saravanakumar, G.; Choi, H. W.; Park, D.;
Kim, W. J. J. Mater. Chem. B 2014, 2, 341.
2) (a) Hartung, J. Chem. Rev. 2009, 109, 4500. (b) Chakrapani, H.;
Bartberger, M. D.; Toone, E. J. J. Org. Chem. 2009, 74, 1450.
(3) (a) McCleverty, J. A. Chem. Rev. 2004, 104, 403. (b) McCleverty,
J. A. Chem. Rev. 1979, 79, 53. (c) Ford, P. C.; Lorkovic, I. M. Chem.
Rev. 2002, 102, 993.
(
Information). The one-electron redox process is assumed to
+
−
correspond to a 2a ⇄ 2a + e reaction. In order to confirm
+
the cationic 2a species formed upon oxidation, an independent
synthesis was attempted by treatment of 1a with [NO]BF in
4
(4) (a) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F.
tetrahydrofuran and toluene; however, this was not successful.
Unlike that of 2a, the cyclic voltammogram of 2b in the same
conditions shows an irreversible pathway for the one-electron
redox process, which indicates an adsorption of 2b itself or
decomposed species on the surface of the electrode. These
results illustrate that subtle changes in the structure of N-
heterocyclic carbenes may affect interactions between the
carbenes and the electrode surface dramatically.
In summary, NHC-stabilized nitric oxide radicals were
prepared for the first time by direct addition of nitric oxide
to two readily available N-heterocyclic carbenes in solution
phase. The compounds, stable in air and in water, were fully
characterized using X-ray crystallography and EPR. Although
nitrous oxide was dominantly formed during the thermolysis of
Nature 2014, 510, 485. (b) Martin, C. D.; Soleilhavoup, M.; Bertrand,
G. Chem. Sci. 2013, 4, 3020. (c) Martin, D.; Soleilhavoup, M.;
Bertrand, G. Chem. Sci. 2011, 2, 389.
(5) (a) Kinjo, R.; Donnadieu, B.; Celik, M. A.; Frenking, G.;
Bertrand, G. Science 2011, 333, 610. (b) Ueng, S. H.; Solovyev, A.;
Yuan, X. T.; Geib, S. J.; Fensterbank, L.; Lacote, E.; Malacria, M.;
Newcomb, M.; Walton, J. C.; Curran, D. P. J. Am. Chem. Soc. 2009,
131, 11256. (c) Matsumoto, T.; Gabbai, F. P. Organometallics 2009,
28, 4252. (d) Tanaka, H.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc.
2012, 134, 5540. (e) Mondal, K. C.; Roesky, H. W.; Schwarzer, M. C.;
Frenking, G.; Tkach, I.; Wolf, H.; Kratzert, D.; Herbst-Irmer, R.;
Niepotter, B.; Stalke, D. Angew. Chem., Int. Ed. 2013, 52, 1801.
(f) Mondal, K. C.; Roesky, H. W.; Schwarzer, M. C.; Frenking, G.;
Niepotter, B.; Wolf, H.; Herbst-Irmer, R.; Stalke, D. Angew. Chem., Int.
Ed. 2013, 52, 2963. (g) Back, O.; Donnadieu, B.; Parameswaran, P.;
Frenking, G.; Bertrand, G. Nat. Chem. 2010, 2, 369. (h) Kinjo, R.;
Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 5930.
2
a, nitric oxide was also found to be thermally transferred to
other N-heterocyclic carbenes. This suggests potential bio-
logical applications for NO delivery. Furthermore, this study
adds another example of stable singlet carbenes acting as
mimics for transition metal centers. Further studies on
carbenes’ reactivity with other small molecules will deepen our
understanding of this interesting resemblance.
(i) Back, O.; Celik, M. A.; Frenking, G.; Melaimi, M.; Donnadieu, B.;
Bertrand, G. J. Am. Chem. Soc. 2010, 132, 10262.
4c
(6) (a) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand,
G. Angew. Chem., Int. Ed. 2005, 44, 5705. (b) Jazzar, R.; Dewhurst, R.
D.; Bourg, J. B.; Donnadieu, B.; Canac, Y.; Bertrand, G. Angew. Chem.,
Int. Ed. 2007, 46, 2899. (c) Zeng, X. M.; Frey, G. D.; Kinjo, R.;
Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2009, 131, 8690.
ASSOCIATED CONTENT
Supporting Information
■
(
7) (a) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.
991, 113, 361. (b) Arduengo, A. J., III. Acc. Chem. Res. 1999, 32, 913.
c) Bantreil, X.; Nolan, S. P. Nat. Protoc. 2011, 6, 69.
8) (a) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.;
*
S
1
(
(
Detailed experimental procedures, spectroscopic data for all
new compounds, and crystallographic data for 2a (CIF). This
Bertrand, G. Angew. Chem., Int. Ed. 2006, 45, 3488. (b) Siemeling, U.;
Farber, C.; Bruhn, C.; Leibold, M.; Selent, D.; Baumann, W.; von
C
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX