5808 J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 26
Brief Articles
(6) Nelson, S. D.; Pohl, L. R.; Trager, W. F. Primary and â-secondary
deuterium isotope effects in N-deethylation reactions. J . Med.
Chem. 1975, 18, 1062-1065.
(7) McMahon, R. E.; Culp, H. W. Mechanism of the dealkylation of
tertiary amines by hepatic oxygenases. Stable isotope studies
with 1-benzyl-4-cyano-4-phenylpiperidine. J . Med. Chem. 1979,
22, 1100-1103.
(8) Mamada, K.; Kasuya, Y.; Baba, S. Pharmacokinetic equivalence
of deuterium-labeled and unlabeled-phenytoin. Drug Metab.
Dispos. 1986, 14, 509-511.
(9) Najjar, S. E.; Blake, M. I.; Benoit, P. A.; Lu, M. C. Effects of
deuteration on locomotor activity of amphetamine. J . Med.
Chem. 1978, 21, 555-558.
(10) Farmer, P. B.; Foster, A. B.; J arman, M.; Oddy, M. R.; Reed, D.
J . Synthesis, metabolism, and antitumor activity of deuterated
analogues of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. J . Med.
Chem. 1978, 21, 514-520.
(11) Hoffman, J . M.; Habecker, C. N.; Pietruszkiewicz, A. M.;
Bolhofer, W. A.; Cragoe, E. J .; Torchiana, M. L.; Hirschmann,
R. A Deuterium isotope effect on the inhibition of gastric
secretion by N,N-dimethyl-N′-[2-(diisopropylamino)ethyl]-N′-
(4,6-dimethyl-2-pyridyl)urea. Synthesis of metabolites. J . Med.
Chem. 1983, 26, 1650-1653.
(12) Trapani, G.; Latrofa, A.; Massimo, F.; Altomare, C.; Sanna, E.;
Usala, M.; Biggio, G.; Liso, G. Propofol analogues. Synthesis,
relationships between structure and affinity at GABAA receptor
in rat brain, and differential electrophysiological profile at
recombinant human GABAA receptors. J . Med. Chem. 1998, 41,
1846-1854.
(13) Guitton, J .; Desage, M.; Lepape, A.; Degoute, C. S.; Manchon,
M.; Brazier, J . L. Quantitation of propofol in whole blood by gas
chromatography-mass spectrometry. J . Chromatogr. B 1995,
669, 358-365.
isotopic effect in the aromatic hydroxylation of the
propofol indicates that the cleavage of the C-H bond is
not the rate-limiting step.
Concerning the metabolism of the propofol-d1 4, for
any deuterated metabolite detected, the mechanism of
hydroxylation of the propofol avoids using the NIH shift
pathway (Figure 1), which has previously been described
for the aromatic hydroxylation of different molecules
such as phenytoin,18 warfarin,19 and oxprenolol.20
Slight differences between the three analogues of
propofol are observed in the in vivo experiments. The
deuterated compounds (more particularly propofol-d1 4)
seem to have lower HD50, higher LD50, and as a result
higher therapeutic index. However, these differences are
not statistically significant and it may be partly related
to the low sensibility of the pharmacological tests.
Concerning the propofol anesthetic activity (HD50),
our results are in agreement with those obtained by
Anderson et al.21 We also point out that lower toxicity
has already been observed with deuterated compounds
compared to their protio analogues (i.e, amphetamines9
and 2,6-di-tert-butyl-4-methylphenol22), which is inter-
esting for a such a category of short-acting anesthetics
requiring repeated injections.
Con clu sion
(14) Guitton, J .; Burronfosse, T.; Sanchez, M.; Desage, M. Quanti-
tation of propofol metabolite, 2,6-diisopropyl-1,4-quinol, by gas
chromatography-mass spectrometry. Anal. Lett. 1997, 30,
1369-1378.
(15) Elbast, W.; Guitton, M.; Desage, M.; Deruaz, D.; Manchon, M.;
Brazier, J . L. Comparison between gas chromatography-atomic
emission detection and gas chromatography-mass spectrometry
for assay of propofol. J . Chromatogr. B 1996, 686, 97-102.
(16) Stetson, P. L.; Domino, E. F.; Sneyd, J . R. Determination of
plasma propofol levels using gas chromatography-mass spec-
trometry with selected-ion monitoring. J . Chromatogr. B 1993,
620, 260-267.
This work demonstrates that the deuteration proce-
dure, commonly used in quantitative studies with
internal standards or for the identification of metabolic
pathways, does not delay the metabolism kinetics of
propofol. The cleavage of the C-H bond is not the rate-
limiting step in the mechanism of para hydroxylation
of propofol, and this mechanism avoids using the NIH
shift pathway. Additionally, in vivo experiments show
that the deuteration does not abolish anesthetic proper-
ties of propofol.
(17) Langenhove, A. V. Isotope effects: definitions and consequences
for pharmacological studies. J . Clin. Pharmacol. 1986, 26, 383-
389.
(18) Claesen, M.; Moustafa, M. A. A.; Adline, J .; Vandervorst, D.;
Poupaert, J . H. Evidence for an arene oxide-NIH shift pathway
in the metabolic conversion of phenytoin to 5-(4-hydroxyphenyl)-
5-phenylhydantoin in the rat and in man. Drug Metab. Dispos.
1982, 6, 667-671.
(19) Darbyshire, J . F.; Iyer, K. R.; Grogan, J .; Korzekwa, K. R.;
Trager, W. F. Selectively deuterated Warfarin. Substate probe
for the mechanism of aromatic hydroxylation catalyzed by
cytochrome P450. Drug Metab. Dispos. 1996, 24, 1038-1045.
(20) Nelson, W. L.; Bru¨ck, R. T. Metabolism of â-adrenergic antago-
nists. Evidence for arene oxide-NIH shift pathway in the
aromatic hydroxylation of oxprenolol. J . Med. Chem. 1988, 22,
1088-1092.
(21) Anderson, A.; Belelli, D.; Bennett, D. J .; Buchanan, K. I.; Casula,
A.; Cooke, A.; Feilden, H.; Gemmell, D. K.; Hamilton, N. M.;
Hutchinson, E. J .; Lambert, J . J .; Maidment, M. S.; McGuire,
R.; McPhail, P.; Miller, S.; Muntoni, A.; Peters, J . A.; Sansbury,
F. H.; Stevenson, D.; Sundaram, H. R-Amino acid phenolic ester
derivatives: novel water-soluble general anesthetic agents which
allosterically modulate gaba(a) receptors. J . Med. Chem. 2001,
44, 3582-3591.
(22) Mizutani, T.; Yamamoto, K.; Tajima, K. Isotope effects on the
metabolism and pulmonary toxicity of butylated hydroxytoluene
in mice by deuteration of the 4-methyl group. Toxicol. Appl.
Pharmacol. 1983, 69, 283-290.
Su p p or tin g In for m a tion Ava ila ble: General experimen-
tal procedure for preparation, physical and spectral charac-
terization (1H and 13C NMR, mass spectrometry, IR spectros-
copy, and elemental analysis) of the synthesized compounds,
and general experimental procedures for in vitro biological
studies on human hepatic microsomes and in vivo biological
studies in mice. This material is available free of charge via
the Internet at http://pubs.acs.org.
Refer en ces
(1) Gepts, A.; Trenchant A. Propofol. Anaesth. Pharmacol. Rev. 1995,
3, 46-56.
(2) Franks, N. P.; Lieb, W. R. Molecular and cellular mechanisms
of general anesthesia. Nature 1994, 367, 607-614.
(3) Simons, P. J .; Cockshott, E. J .; Douglas, E. J .; Gordon, E. A.;
Hopkins, K.; Rowland, M. Disposition in male volunteers of a
subanaesthetic intravenous dose of an oil in water emulsion of
14C-propofol. Xenobiotica 1988, 18, 429-440.
(4) Trapani, G.; Altomare, C.; Sanna, E.; Biggio, J .; Liso, G. Propofol
in anesthesia. Mechanism of action, structure-activity relation-
ships and drug delivery. Curr. Med. Chem. 2000, 7, 249-271.
(5) Guitton, J .; Buronfosse, T.; Desage, M.; Flinois, J . P.; Perdrix,
J . P.; Brazier, J . L.; Beaune, P. Possible involvement of multiple
human cytochrome P450 in the liver metabolism of propofol. Br.
J . Anaesth. 1998, 80, 788-795.
J M020864Q