C O M M U N I C A T I O N S
Table 2. Asymmetric Allylboration of Ketonesa
Figure 2. Proposed transition state.
ration reaction catalyzed by 5b. A positive nonlinear effect was
observed when we examined the effect of catalyst er on the
enantioselectivity of the reaction.15 However, the yield of the
reaction diminished linearly with catalyst er. The reaction was also
found to be first order in catalyst. We attributed the observed
nonlinear effect to racemate catalyst aggregation.16 On the basis of
these experiments, we propose a model of selectivity in which the
5b‚boronate complex imparts selectivity by activation of the alkoxy
ligand via hydrogen bonding17 leading to si facial attack on the
ketone in a chair-like TSq (Figure 2).
entry
ketone
product
% yieldb
erc
1d
2d
3
4
5
6
7
8
9a
9b
9c
9d
9e
9f
9g
9h
9i
9j
9k
9l
9m
9n
9o
11a
11b
11c
11d
11e
11f
11g
11h
11i
11j
11k
11l
11m
11n
11o
83
81
86
89
83
81
87
88
83
76
88
87
83
91
93
97:3
95.5:4.5
99.5:0.5
95.5:4.5
99.5:0.5
96.5:3.5
97:3
97:3
97.5:2.5
98:2
96.5:3.5
97.5:2.5
96:4
96.5:3.5
95:5
9d
10
11
12
13
14
15d
In summary, we have developed a highly enantioselective and
diastereoselective allylboration of ketones catalyzed by chiral
BINOL-derived catalysts. Ongoing studies include expansion of
the scope and utility of the reaction.
Acknowledgment. S.L. gratefully acknowledges a graduate
research fellowship from Merck Research Laboratories, Boston.
This research was supported by a gift from Amgen, Inc., an NSF
CAREER grant (CHE-0349206), and the NIH (P50 GM067041).
a Reactions were run with 0.125 mmol 10a, 0.19 mmol ketone, and 15
mol % of catalyst in a PhCF3:PhCH3 (3:1) mixture (0.1 M) for 15 h under
Ar, followed by flash chromatography on silica gel. b Isolated yield.
c Determined by chiral HPLC and chiral GC analysis. d Reactions were run
with 0.5 mmol 10a and 0.75 mmol acetophenone.
Supporting Information Available: Experimental procedures and
HPLC separations for compounds 11a-11o, 13a, and 13b. This material
Scheme 1. Asymmetric Crotylboration of Acetophenone
References
(1) (a) Roush, W. R. In ComprehensiVe Organic Synthesis; Trost, B. A.,
Fleming, I., Eds.; Permagon Press: Oxford, U.K., 1991; Vol. 2. (b)
Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J.,
Ed.; Wiley-VCH: Weinheim, Germany, 2000; Chapter 11, p 403. (c)
Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry; Otera,
J., Ed.; Wiley-VCH: Weinheim, Germany, 2000; Chapter 10, p 299.
(2) Reviews: (a) Yanagisawa, A. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
Vol. 2, p 965. (b) Denmark, S. E.; Fu, J. Chem. ReV. 2003, 103, 2763.
(3) (a) Tietze, L. F.; Schiemann, K.; Wegner, C. J. Am. Chem. Soc. 1995,
117, 5851. (b) Tietze, L. F.; Wegner, C.; Wulff, C. Eur. J. Org. Chem.
1998, 1639, 9. (c) Tietze, L. F.; Weigand, B.; Volkel, L.; Wulff, C.; Bittner,
C. Chem.sEur. J. 2001, 7, 161.
resulted in diminished activity and lower selectivity, highlighting
the importance of the diol functionality.
The optimized reaction conditions were effective at promoting
the asymmetric allylboration of a variety of ketones in high
enantioselectivities (Table 2). Electron-rich and electron-deficient
aromatic ketones were tolerated in the reaction (entries 1-6).
Heteroaromatic ketones afforded the corresponding homoallylic
alcohols in good yields and enantioselectivities (entries 7 and 8).
Notably, the ethyl and chloromethyl ketones 9i and 9j both cleanly
underwent the allylboration in high er’s (entries 9 and 10). Cyclic
ketones were good substrates for the reaction, as well (entries 11-
13). The unsaturated enones 9n and 9o only afforded the 1,2-
addition products, both in good yields and er’s (entries 14 and 15).
Catalyst 5b also promoted the stereoselective crotylboration of
acetophenone; (E)-crotyl boronate 12a afforded anti-isomer 13a
in high dr and er, and (Z)-crotyl boronate 12b yielded the syn
product 13b in good yields and high selectivities (Scheme 1). The
observed diastereoselectivities were consistent with a Zimmerman-
Traxler transition state model.
(4) Burns, N. Z.; Hackman, B. M.; Ng, P. Y.; Powelson, I. A.; Leighton, J.
L. Angew. Chem., Int. Ed. 2006, 128, 3811.
(5) Canales, E.; Prasad, G.; Soderquist, J. J. Am. Chem. Soc. 2005, 127, 11572.
(6) Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. 2004, 6, 2701.
(7) (a) Casolari, S.; D’Addario, D.; Tagliavine, E. Org. Lett. 1999, 1, 1061.
(b) Cunningham, A.; Woodward, S. Synthesis 2002, 43. (c) Kii, S.;
Maruoka, K. Chirality 2003, 15, 67. (d) Kim, J. G.; Waltz, K. M.; Garcia,
I. F.; Kwiatkowski, G. D.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126,
12580.
(8) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004,
126, 8910.
(9) Wadamoto, M.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 14556.
(10) (a) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586.
(b) Miyaura, N.; Ahiko, T.; Ishiyama, T. J. Am. Chem. Soc. 2002, 124,
12414.
(11) (a) Yu, S. H.; Ferguson, M. J.; McDonald, R.; Hall, D. G. J. Am. Chem.
Soc. 2005, 127, 12808. (b) Rauniyar, V.; Hall, D. G. Angew. Chem., Int.
Ed. 2006, 45, 2426.
(12) Rauniyar, V.; Hall, D. G. J. Am. Chem. Soc. 2004, 126, 4518.
(13) McCusker, P. A.; Pennartz, P. L.; Pilger, C. R., Jr. J. Am. Chem. Soc.
1962, 84, 4362.
(14) See Supporting Information for experimental details.
(15) Review: Girard, C.; Kagan, H. B. Angew. Chem., Int. Ed. 1998, 37, 2922.
(16) Mikami, K.; Matsumoto, Y. Tetrahedron 2004, 60, 7715.
(17) Furuta, K.; Miwa, Y.; Iwanaga, K.; Yamamoto, H. J. Am. Chem. Soc.
1988, 110, 6254.
Preliminary mechanistic experiments indicate a catalyst-associ-
ated boronate complex.14 Rapid exchange of one isopropoxy ligand
was observed by 1H NMR in the reaction of 5b with 10a. A similar
observation was made when we monitored the asymmetric allylbo-
JA0651308
9
J. AM. CHEM. SOC. VOL. 128, NO. 39, 2006 12661