K. Tanaka et al. / Bioorg. Med. Chem. 21 (2013) 2715–2719
2719
Scientific Research on Innovative Areas ‘New Polymeric Materials
Based on Element-Blocks (No. 2401)’ (24102013) of The Ministry
of Education, Culture, Sports, Science, and Technology, Japan.
Supplementary data
References and notes
1
.
.
Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110,
595.
Emerson, R.; Chalmers, R. V.; Cederstrand, C. N. Proc. Natl. Acad. Sci. U.S.A. 1957,
3, 133.
6
2
4
3.
4.
5.
Dring, M. J.; Lüning, K. Mar. Biol. 1985, 87, 109.
Canaani, O.; Cahen, D.; Malkin, S. FEBS Lett. 1982, 150, 142.
(a) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem., Int. Ed. 2008, 47, 1184; (b)
Ziessel, R.; Ulrich, G.; Harriman, A. New J. Chem. 2007, 31, 496; (c) Bones, N.;
Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130.
Figure 5. Absorption changes of TB by introducing a trifluoromethyl group. The
spectra were obtained from the solutions containing the dyes (10 M) in THF.
l
6.
(a) Kobayashi, T.; Komatsu, T.; Kamiya, M.; Campos, C.; González-Gaitán, M.;
Terai, T.; Hanaoka, K.; Nagano, T.; Urano, Y. J. Am. Chem. Soc. 2012, 134, 11153;
(
b) Komatsu, T.; Oushiki, D.; Takeda, A.; Miyamura, M.; Ueno, T.; Terai, T.;
be emphasized that the molar extinct coefficients of the thiophene-
fused BODIPYs are two or three times larger than those of the con-
Hanaoka, K.; Urano, Y.; Mineno, T.; Nagano, T. Chem. Commun. 2011, 47, 10055;
(c) Komatsu, T.; Urano, Y.; Fujikawa, Y.; Kobayashi, T.; Kojima, H.; Terai, T.;
Hanaoka, K.; Nagano, T. Chem. Commun. 2009, 7015.
1
5,16
ventional absorbers.
Thus, we can say that the thiophene-fused
7
8
9
.
.
.
Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.; Suzuki, J. J. Am. Chem. Soc.
BODIPYs are promised to be an efficient quencher on the biotech-
2
008, 130, 1550.
Umezawa, K.; Matsui, A.; Nakamura, Y.; Citterio, D.; Suzuki, K. Chem. Eur. J.
009, 15, 1096.
1
7
nological assays.
. Conclusions
We demonstrate the validity of the TB skeleton for the design of
2
(a) Banfi, S.; Caruso, E.; Zaza, S.; Mancini, M.; Gariboldi, M. B.; Monti, E. J.
Photochem. Photobiol., B 2012, 114, 52; (b) Chen, Y.; Zhao, J.; Xie, L.; Guo, H.; Li,
Q. RSC Adv. 2012, 2, 3942; (c) Bellier, Q.; Dailier, F.; Jeanneau, E.; Maury, O.;
Andraud, C. New J. Chem. 2012, 36, 768; (d) Caruso, E.; Banfi, S.; Barbieri, P.;
Leva, B.; Orlandi, V. T. J. Photochem. Photobiol., B 2012, 114, 44; (e) Jiang, X.-D.;
Zhang, H.; Zhang, Y.; Zhao, W. Tetrahedron 2012, 68, 9795.
4
an efficient light absorber. We established two manners for evolv-
ing the optical properties of TB: by employing the heavy atom ef-
fect, the peak positions can be shifted to the red-light region. The
enhancement of molar extinct coefficients was also obtained. It
was found that the introduction of the strong electron-withdraw-
ing group at the meso position in the BODIPY skeleton was respon-
sible for the drastic bathochromic shift in the absorption spectrum.
Finally, we obtained the series of efficient light absorbers for the
red light. These compounds have suitable optical properties for
generating the light to control photosynthesis and plant growth.
Furthermore, thiophene-fused BODIPYs with the efficient
light-absorbing ability are promised to be applicable for efficient
sensitizers. Our materials and chemical modification methods for
modulating the optical properties presented here could be versatile
for developing efficient photo-responsive bio-related materials to
control the biological activities and efficient quenchers on the bio-
technological assays with labelled biomolecules.
10. Awuah, S. G.; Polreis, J.; Biradar, V.; You, Y. Org. Lett. 2011, 13, 3884.
11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo,
C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
GAUSSIAN 03, Revision D.01; GAUSSIAN: Wallingford, CT, 2004.
1
2. Cai, Q.; Li, Z.; Wei, J.; Ha, C.; Pei, D.; Ding, K. Chem. Commun. 2009, 7581.
13. Lim, S. H.; Thivierge, C.; Nowak-Sliwinska, P.; Han, J.; van den Bergh, H.;
Wagnières, G.; Burgess, K.; Lee, H. B. J. Med. Chem. 2010, 53, 2865.
4. Adarsh, N.; Shanmugasundaram, M.; Avirah, R. R.; Ramaiah, D. Chem. Eur. J.
1
1
1
2
012, 18, 12655.
5. Kabelá cˇ , M.; Zimandl, F.; Fessl, T.; Chval, Z.; Lankaš, F. Phys. Chem. Chem. Phys.
2010, 12, 9677.
6. Johansson, H. E.; Johansson, M. K.; Wong, A. C.; Armstrong, E. S.; Peterson, E. J.;
Grant, R. E.; Roy, M. A.; Reddington, M. V.; Cook, R. M. Appl. Environ. Microbiol.
Acknowledgements
This work was partially supported by ‘The Adaptable and Seam-
less Technology Transfer Program’ through target-driven R&D, Ja-
pan Science and Technology Agency (JST) and a Grant-in-Aid for
2
011, 77, 4223.
17. Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1996, 14, 303.