KINETICS OF HYDROGEN PEROXIDE ACCUMULATION
1075
AIb/v determines the initial slope of an accumulation
curve, i.e., the rate of H O accumulation, which
2. Pletcher, D., Acta Chem. Scand., 1999, vol. 53, p. 745.
2
2
3. Brillas, E., Bastida, R. M., Llosa, E., and Casado, J.,
decreases with increasing H O concentration because
2
2
J. Electrochem. Soc., 1995, vol. 142, no. 6, pp. 1733
of a decrease in and rise in the decomposition rate.
The highest H O concentration is obtained when
1
741.
2
2
4
5
. Nagiev, T.M., Usp. Khim., 1985, vol. 54, no. 10,
pp. 1654 1673.
the accumulation rate becomes equal to the rate of
H O decomposition. When the decomposition rate is
2
2
. Schumb, W.C., Satterfield, Ch.N., and Went-
worth, R.L., Hydrogen Peroxide, New York: Chap-
man and Hall, 1955.
described by Eq. (6), the maximum concentration is
given by the expression c = A I/(kv).
H O
2
2
The rate of H O accumulation is strongly affected
2
2
6. Khimiya i tekhnologiya perekisi vodoroda (Chemistry
and Technology of Hydrogen Peroxide), Sery-
shev, G.A., Ed., Leningrad: Khimiya, 1984.
by coefficient b (Fig. 6, curve 7). The decrease in k
and a starts to affect the accumulation rate at higher
H O concentrations (curves 4 and 5). The quantity
2
2
7
. Kornienko, V.L., Kolyagin, G.A., and Saltykov, Yu.V.,
I/v is the volume current density and, consequently,
Zh. Prikl. Khim., 1999, vol. 72, no. 3, pp. 353 361.
the rate of H O accumulation may become higher
2
2
8
. Kolyagin, G.A. and Kornienko, V.L., Khim. Inter.
Ustoich. Razv., 2000, vol. 8, no. 6, pp. 803 807.
with increasing current density or decreasing catholyte
volume (Fig. 6, curves 2 and 3). This may give, dur-
ing the first hours of electrolysis, an H O concentra-
9. Vert, Zh.L. and Pavlova, V.F., Zh. Prikl. Khim., 1988,
2
2
tion exceeding the concentration that would be ob-
served at a decomposition rate close to zero and = 1
vol. 61, no. 5, pp. 1148 1150.
1
1
1
0. Balej, J. and Spalek, O., Coll. Czech. Chem. Commun.,
(
Fig. 6, curve 1).
1
979, vol. 44, no. 2, pp. 488 494.
1. Spalek, O., Balej, J., and Paseka, I., J. Chem. Soc.,
Faraday Trans. 1, 1982, vol. 78, pp. 2349 2359.
CONCLUSIONS
2. Duke, F.R. and Haas, T.W., J. Phys. Chem., 1961,
(1) The rate of subsequent electroreduction of
vol. 65, no. 2, pp. 304 306.
H O to water in an alkaline electrolyte in
2
2
13. Moiseev, I.I., Izv. Akad. Nauk, Ser. Khim., 1995,
hydrophobized carbon black electrodes is low. The
accumulation rate of hydrogen peroxide is determined
under these conditions by the rate of its chemical
decomposition in the cathode chamber.
no. 3, pp. 578 588.
1
1
4. Gyenge, E.L. and Oloman, C.W., J. Appl. Electro-
chem., 2001, vol. 31, no. 2, pp. 233 243.
5. Chaenko, N.V., Kornienko, G.V., Vasil’eva, I.S., and
Kornienko, V.L., Zh. Prikl. Khim., 1996, vol. 69,
no. 5, pp. 792 794.
(2) In acidic solutions, the rate of hydrogen perox-
ide accumulation is mainly determined by the rate of
subsequent H O reduction to water, which depends
2
2
1
1
1
1
6. Kenova, T.A., Abolin, O.E., and Kornienko, V.L.,
on the concentration of H O and hydrogen ions in
2
2
Zh. Prikl. Khim., 1991, vol. 64, no. 3, pp. 792 794.
the volume of the gas-diffusion electrode.
7. Kolyagin, G.A. and Kornienko, V.L., Zh. Prikl. Khim.,
(
3) The equations relating c and electrolysis
H O
1989, vol. 62, no. 9, pp. 2082 2087.
2
2
duration, presented in the communication, well de-
scribe experimental curves of H O accumulation. All
8. Chaenko, N.V., Kornienko, G.V., Kenova, T.A., et al.,
Zh. Prikl. Khim., 2000, vol. 73, no. 1, pp. 51 54.
2
2
the other parameters being the same, the initial rate of
H O accumulation is determined by the volume
9. Kanter, M.Ya., Raskina, I.Kh., Bogdanov, G.A., and
Koziv, Yu.N., Zh. Prikl. Khim., 1977, vol. 50, no. 4,
pp. 724 731.
2
2
current density; with increasing electrolysis duration
and H O concentration, the rate of hydrogen perox-
2
2
2
2
2
0. Raskina, I.Kh., Sadov, F.I., and Bogdanov, G.A.,
ide decomposition in an alkaline medium and reduc-
tion to water in an acidic medium starts to exert
steadily increasing influence on the accumulation rate.
Zh. Prikl. Khim., 1977, vol. 39, no. 1, pp. 35 39.
1. Anurova, A.I., Daniel’-Bek, V.S., and Rotinyan, A.L.,
Elektrokhimiya, 1968, vol. 4, no. 7, pp. 815 821.
2. Malyshev, V.A. Abolin, O.E., and Kornienko, V.L.,
REFERENCES
Zh. Prikl. Khim., 1991, vol. 64, no. 10, pp. 2181 2183.
1
. Vasil’eva, I.S., Kornienko, V.L., and Kolyagin, G.A.,
Khim. Inter. Ustoich. Razv., 2001, vol. 9, no. 4,
pp. 529 532.
23. Khomutov, N.E., Khachaturyan, O.B., and Khokh-
lov, M.I., Zh. Prikl. Khim., 1987, vol. 60, no. 1,
pp. 31 34.
RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 76 No. 7 2003