ChemComm
Communication
Table 4 Arylation reactions with radical scavengers
excellent yields were obtained for broad substrates. P5a thus repre-
sents one of the most efficient additions into the toolbox, currently
with a limited collection of organocatalysts for radical-mediated
coupling reactions. P5a may, further, hold promise in producing
other types of molecular skeletons via reactions where radicals play an
important role.9a
Entry
Additive (equiv.)
Yield of 3aa (%)
1
2
TEMPO (1.0)
Diyldibenzene (1.0)
0
0
a
Yields were determined by 1H NMR.
Notes and references
1 (a) D. A. Evans, C. J. Dinsmore, P. S. Watson, M. R. Wood, T. I. Richardson,
B. W. Trotter and J. L. Katz, Angew. Chem., Int. Ed., 1998, 37, 2704;
(b) L. A. Cuccia, J.-M. Lehn, J.-C. Homo and M. Schmutz, Angew. Chem., Int.
Ed., 2000, 39, 233; (c) T. Laird, Org. Process Res. Dev., 2006, 10, 851.
2 (a) A. de Meijere and F. Diederich, Metal-Catalyzed Cross-Coupling Reactions,
Wiley-VCH, Weinheim, 2nd edn, 2004; (b) N. Miyaura, Cross-Coupling
Reactions. Topics in Current Chemistry, Springer, Berlin, 2002, vol. 219.
3 (a) W. Liu, H. Cao, H. Zhang, H. Zhang, K. H. Chung, C. He, H. Wang,
F. Y. Kwong and A. Lei, J. Am. Chem. Soc., 2010, 132, 16737;
(b) E. Shirakawa, K. Itoh, T. Higashino and T. Hayashi, J. Am. Chem.
Soc., 2010, 132, 15537; (c) C.-L. Sun, H. Li, D.-G. Yu, M. Yu, X. Zhou,
X.-Y. Lu, K. Huang, S.-F. Zheng, B.-J. Li and Z.-J. Shi, Nat. Chem., 2010,
2, 1044; (d) Y. Qiu, Y. Liu, K. Yang, W. Hong, Z. Li, Z. Wang, Z. Yao and
S. Jiang, Org. Lett., 2011, 13, 3556; (e) G. P. Yong, W.-L. She, Y.-M. Zhang
and Y.-Z. Li, Chem. Commun., 2011, 47, 11766; ( f ) W.-C. Chen, Y.-C. Hsu,
W.-C. Shih, C.-Y. Lee, W.-H. Chuang, Y.-F. Tsai, P. P.-Y. Chen and
T.-G. Ong, Chem. Commun., 2012, 48, 6702; (g) C.-L. Sun, Y.-F. Gu,
W.-P. Huanga and Z.-J. Shi, Chem. Commun., 2011, 47, 9813;
(h) M. Rueping, M. Leiendecker, A. Das, T. Poisson and L. Bui, Chem.
Commun., 2011, 47, 10629; (i) S. De, S. Ghosh, S. Bhunia, J. A. Sheikh and
A. Bisai, Org. Lett., 2012, 14, 4466; ( j) Y. Wu, S. M. Wong, F. Mao,
T. L. Chan and F. Y. Kwong, Org. Lett., 2012, 14, 5306–5309.
Scheme 1 Kinetic isotope effect.
4 (a) J. L. Sessler, H. Maeda, T. Mizuno, V. M. Lynch and H. Furuta, J. Am.
Chem. Soc., 2002, 124, 13474; (b) W. Q. Ong, H. Q. Zhao, C. Sun, J. E. Wu,
Z.Wong,S.F.Y.Li,Y.HongandH.Q.Zeng,Chem. Commun., 2012, 48, 6343;
(c) H. Q. Zhao, W. Q. Ong, F. Zhou, X. Fang, X. Y. Chen, S. F. Y. Li, H. B. Su,
N.-J. Cho and H. Q. Zeng, Chem. Sci., 2012, 3, 2042; (d) W. Q. Ong,
H. Q. Zhao, X. Fang, S. Woen, F. Zhou, W. L. Yap, H. B. Su, S. F. Y. Li and
H. Q. Zeng, Org. Lett., 2011, 13, 3194; (e) H. Q. Zhao, W. Q. Ong, X. Fang,
F. Zhou, M. N. Hii, S. F. Y. Li, H. B. Su and H. Q. Zeng, Org. Biomol. Chem.,
2012, 10, 1172; ( f ) J. Garric, J.-M. Leger and I. Huc, Angew. Chem., Int. Ed.,
2005, 44, 1954; (g) C. Li, G.-T. Wang, H.-P. Yi, X.-K. Jiang, Z.-T. Li and
R.-X. Wang, Org. Lett., 2007, 9, 1797; (h) H. Jiang, J. M. Leger, P. Guionneau
and I. Huc, Org. Lett., 2004, 6, 2985; (i) J. L. Hou, X. B. Shao, G. J. Chen,
Y. X. Zhou, X. K. Jiang and Z. T. Li, J. Am. Chem. Soc., 2004, 126, 12386.
´
5 (a) J. Sanchez-Quesada, M. P. Isler and M. R. Ghadiri, J. Am. Chem.
Soc., 2002, 124, 10004; (b) A. J. Helsel, A. L. Brown, K. Yamato,
W. Feng, L. H. Yuan, A. J. Clements, S. V. Harding, G. Szabo,
Z. F. Shao and B. Gong, J. Am. Chem. Soc., 2008, 130, 15784.
6 (a) B. Qin, C. L. Ren, R. J. Ye, C. Sun, K. Chiad, X. Y. Chen, Z. Li,
F. Xue, H. B. Su, G. A. Chass and H. Q. Zeng, J. Am. Chem. Soc., 2010,
132, 9564; (b) C. L. Ren, V. Maurizot, H. Q. Zhao, J. Shen, F. Zhou,
W. Q. Ong, Z. Y. Du, K. Zhang, H. B. Su and H. Q. Zeng, J. Am. Chem.
Soc., 2011, 133, 13930; (c) Z. Y. Du, C. L. Ren, R. J. Ye, J. Shen, Y. J. Lu,
J. Wang and H. Q. Zeng, Chem. Commun., 2011, 47, 12488–12490.
7 For recent reviews on the diversity of H-bonded macrocycles and their
associated functions, see: (a) W. Q. Ong and H. Q. Zeng, J. Inclusion
Phenom. Macrocyclic Chem., 2013, DOI: 10.1007/s10847; (b) H. L. Fu, Y. Liu
and H. Q. Zeng, Chem. Commun., 2013, DOI: 10.1039/c2cc36698c.
8 (a) Lowering down the concentration of P5a likely discourages the self-
aggregation and increases the effective concentration of monomeric
macrocycles for them to efficiently interact with KOt-Bu to promote
better arylation reactions; (b) Such a low catalyst loading may arise
from the likelihood that the planar and electron-rich nature of the
macrocyclic backbone in P5a greatly facilitates the initial stage invol-
ving the endothermic formation of high energy intermediate species I
and subsequent reduction of the aryl halide by t-butoxide as proposed
in Scheme 2. Of further interest to note is that 18-crown-6 gave 25%
yield under the optimized conditions used for P5a.
Scheme 2 The proposed catalytic cycle of arylation reactions.
On the basis of the above data and related results reported by
others,3,9 a radical-mediated catalytic mechanism is very likely as
illustrated in Scheme 2. In the proposed catalytic cycle, the cation-
binding macrocycle P5a encapsulates the K+ inside its cavity and
forms the complex I, which subsequently transfers a single electron to
iodobenzene 1, yielding the intermediate radical anion II and cation
III. From II, aromatic radical IV is formed that adds to benzene 2a to
generate biaryl radical V. Oxidation of V by III produces cations VI and
VII of which VI is deprotonated by a t-butoxide anion generated in situ
to afford cross-coupled product 3, and VII reacts with KOt-Bu to
re-generate complex I that allows the catalytic cycle to continue.
In summary, we disclose here a novel foldamer-based H-bond-
rigidified organocatalyst P5a,7 enabling the efficient construction of
biaryls via direct arylations of unactivated arenes with iodoarenes and
bromoarenes in the presence of KOt-Bu by using as low as 2 mol%
catalyst loading in a transition-metal-free fashion. Very good to
9 (a) H. Zhang, R. Shi, A. Ding, L. Lu, B. Chen and A. Lei, Angew. Chem.,
Int. Ed., 2012, 51, 12542; (b) A. Studer and D. P. Curran, Angew. Chem.,
Int. Ed., 2011, 50, 5018; (c) D. E. Pearson and C. A. Buehler, Chem.
Rev., 1974, 74, 45.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 2323--2325 2325