Organic Letters
Letter
was continued until the color of the solution completely bleached
out. The progress of the reaction was monitored by GC−MS (for
product sclaral and sclareolide determination) and UV−vis/ESI-
MS (to determine reactive intermediates). GC−MS studies at
the end of this reaction showed formation of a mixture of sclaral
and GC−MS studies indicated a positive correlation between the
FeIII recovered after each cycle and FeV(O) formed initially at the
start of the cycle with the gradual increase in the TON indicating
that FeV(O) remains the primary oxidant under aerobic
conditions (Figure S3-B). In conclusion, we have reported a
rationally designed iron biuret modified TAML complex (1) that
mostly outperforms state-of-the-art Fe-based oxidation catalysts
in terms of selectivity toward unactivated 3° C−H bonds, catalyst
loading, product yield, and substrate scope. Specifically, this
system can oxidize 3° C−H bonds in substrates bearing arene
rings, N-based heterocycles, and acid-sensitive substrates, which
addresses a serious drawback of Fe-based catalysts reported to
date. Moreover, these reactions exhibit excellent retention of
configuration while dealing with substrates like dimethylcyclo-
hexane and decalin, irrespective of its stereochemistry (cis or
trans). Apart from these, the high selectivity toward 3° C−H
bonds is manifested in the selective oxidation of 3° C−H bonds
in complex molecules, like natural products such as cedryl acetate
and artemisinin without oxidation of methylenic C−H bonds.
Thus, 1 displays great promise in the quest to develop reagents
for selective oxidation of alkyl C−H bonds in complex natural
products under mild conditions.
REFERENCES
■
(1) (a) White, M. C. Synlett 2012, 23, 2746−2748. (b) Jazzar, R.; Hitce,
J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. - Eur. J. 2010,
16, 2654−2672.
(2) (a) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.;
Evans, B. J. J. Am. Chem. Soc. 1981, 103, 2884−2886. (b) Nam, W. Acc.
Chem. Res. 2007, 40, 522−531. (c) Meunier, B. Chem. Rev. 1992, 92,
1411−1456. (d) Que, L. Acc. Chem. Res. 2007, 40, 493−500. (f) Oloo,
W. N.; Que, L. Acc. Chem. Res. 2015, 48, 2612−2621. (g) Costas, M.;
Mehn, M. P.; Jensen, M. P.; Que, L. Chem. Rev. 2004, 104, 939−986.
(h) Lindhorst, A. C.; Haslinger, S.; Kuhn, F. E. Chem. Commun. 2015,
51, 17193−17212.
(3) (a) Talsi, E. P.; Bryliakov, K. P. Coord. Chem. Rev. 2012, 256, 1418−
1434. (b) Okuno, T.; Ito, S.; Ohba, S.; Nishida, Y. J. Chem. Soc., Dalton
Trans. 1997, 3547−3551. (c) Company, A.; Gomez, L.; Guell, M.; Ribas,
X.; Luis, J. M.; Que, L.; Costas, M. J. Am. Chem. Soc. 2007, 129, 15766−
15767. (d) Makhlynets, O. V.; Rybak-Akimova, E. V. Chem. - Eur. J.
2010, 16, 13995−14006.
́
̈
(4) (a) Chen, M. S.; White, M. C. Science 2007, 318, 783−787.
(b) Chen, M. S.; White, M. C. Science 2010, 327, 566−571.
(c) Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2013, 135,
14052−14055.
(5) (a) Gom
Org. Chem. 2013, 78, 1421−1433. (b) Gom
́
ez, L.; Canta, M.; Font, D.; Prat, I.; Ribas, X.; Costas, M. J.
ez, L.; Garcia-Bosch, I.;
́
Company, A.; Benet-Buchholz, J.; Polo, A.; Sala, X.; Ribas, X.; Costas, M.
Angew. Chem., Int. Ed. 2009, 48, 5720−5723. (c) Prat, I.; Company, A.;
Postils, V.; Ribas, X.; Que, L.; Luis, J. M.; Costas, M. Chem. - Eur. J. 2013,
19, 6724−6738.
(6) (a) Adams, A. M.; Du Bois, J.; Malik, H. A. Org. Lett. 2015, 17,
6066−6069. (b) Brodsky, B. H.; Du Bois, J. J. Am. Chem. Soc. 2005, 127,
15391−15393. (c) Adams, A. M.; Du Bois, J. Chem. Sci. 2014, 5, 656−
659. (d) McNeill, E.; Du Bois, J. J. Am. Chem. Soc. 2010, 132, 10202−
10204. (e) Talsi, E. P.; Ottenbacher, R. V.; Bryliakov, K. P. J. Organomet.
Chem. 2015, 793, 102−107. (f) Ottenbacher, R. V.; Talsi, E. P.;
Bryliakov, K. P. ACS Catal. 2015, 5, 39−44.
(7) Bartos, M. J.; Gordon-Wylie, S. W.; Fox, B. G.; Wright, L. J.;
Weintraub, S. T.; Kauffmann, K. E.; Munck, E.; Kostka, K. L.; Uffelman,
E. S.; Rikard, C. E. F.; Noon, K. R.; Collins, T. J. Coord. Chem. Rev. 1998,
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
̈
General considerations and materials, characterization
data of 2, mechanistic approach for ambroxide oxidation,
synthetic procedures and characterization of unreported
substrates, procedure of catalytic hydroxylation reaction,
characterization data and NMR spectra of products, GC
and chiral GC of selected compounds, crystal structure of
17b (ORTEP diagram), and references (PDF)
174, 361−390.
(8) Collins, T. J. Acc. Chem. Res. 2002, 35, 782−790.
(9) Panda, C.; Ghosh, M.; Panda, T.; Banerjee, R.; Sen Gupta, S. Chem.
Commun. 2011, 47, 8016−8018.
(10) Ghosh, M.; Singh, K. K.; Panda, C.; Weitz, A.; Hendrich, M. P.;
Collins, T. J.; Dhar, B. B.; Sen Gupta, S. J. Am. Chem. Soc. 2014, 136,
9524−9527.
(11) The catalytic reactions were attempted using the Fe−bTAML
complex bearing a nitro group in the aromatic ring to provide much
higher operational stability and faster reaction rates. The product yields
for the oxidations dramatically increase for the nitro-substituted
complex in comparison to the unsubstituted complex. Detailed
mechanistic work will be reported.
(12) Chen, K.; Que, L. J. Am. Chem. Soc. 2001, 123, 6327−6337.
(13) Chen, K.; Eschenmoser, A.; Baran, P. S. Angew. Chem., Int. Ed.
2009, 48, 9705−9708.
(14) Ghosh, M.; Nikhil, Y. L. K.; Dhar, B. B.; Sen Gupta, S. Inorg. Chem.
2015, 54, 11792−11798.
(15) Howell, J. M.; Feng, K.; Clark, J. R.; Trzepkowski, L. J.; White, M.
C. J. Am. Chem. Soc. 2015, 137, 14590−14593.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
§S.J. and M.G. contributed equally to this work.
Notes
(16) Pattanayak, S.; Sen Gupta, S. Manuscript in revision. (Note: We
believe it is due to the propensity of FeV(O), 2, to exist as a 5-coordinate
complex in solution, as observed from XAS studies, which prevents
binding of pyridine nitrogen to the Fe-center, leading to its oxidation.)
(17) Mayer, J. M. In Biomimetic Oxidations Catalyzed by Transition
Metal Complexes; Meunier, B., Ed; Imperial College Press: London,
1999; Chapter 2.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
S.S.G. acknowledges SERB EMR/2014/0016 for funding. S.J.
acknowledges UGC New Delhi for funding. We thank Miquel
Costas for helpful discussions.
(18) Kim, J.; Harrison, R. G.; Kim, C.; Que, L. J. Am. Chem. Soc. 1996,
118, 4373−4379.
DEDICATION
■
This paper is dedicated to Professor Terrence J. Collins.
D
Org. Lett. XXXX, XXX, XXX−XXX