ACS Catalysis
Research Article
metallic Pd surface area of SiO @Pd and SiO @Pd@mSiO
2
was quantified using CO(g) chemisorption (Micromeritics
acquire the XRD patterns and elemental analysis, respectively.
We appreciate the help from Ruiqing Lu (UIUC) with
obtaining the zeta potential measurements, and Dr. Shaoying
Qi (UIUC) for gas adsorption experiments. Technical
Assistance at KAUST was provided by Dr. Hongnan Zhang,
Dr. Zhonghai Zhang, Mr. Rubal Dua and Mr. Guoying Chen.
Four anonymous reviewers provided insightful comments to
help improve the presentation of the results in this paper.
2
2
ASAP 2020C). The samples were heated in H (g) at 350 °C for
2
2
h before performing CO chemisorption analysis at 35 °C.
The crystalline phases of Pd NPs and SiO @Pd were
2
determined by powder XRD measurement performed on a
Bruker General Area Detector Diffraction System using Cu Kα
radiation. The surface zeta potentials of SiO @Pd and SiO @
2
2
Pd@mSiO were measured with a Malvern Zetasizer ZS 90. To
2
measure zeta potential, solids were added to a reactor with a
REFERENCES
−1
■
loading of 2 mgPd L . Phosphate (1 mM) was added as a pH
buffer and pH was then adjusted to the desired value to mimic
conditions used in bromate reduction kinetics experiments.
(
3
1) Beletskaya, I. P.; Cherpakov, A. V. Chem. Rev. 2000, 100, 3009−
066.
(
2) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062−5085.
3) Chaplin, B. P.; Reinhard, M.; Schneider, W. F.; Schu
Shapley, J. R.; Strathmann, T. J.; Werth, C. J. Environ. Sci. Technol.
012, 46, 3655−3670.
4) Chaplin, B. P.; Roundy, E.; Guy, K. A.; Shapley, J. R.; Werth, C. J.
After sparging with H for 30 min, an aliquot of suspension was
2
collected and measured immediately. Concentrations of Pd in
Pd NP suspension, SiO @Pd, and SiO @Pd@mSiO were
(
̈
th, C.;
2
2
2
quantified by inductively coupled plasma−optical emission
spectrometry (ICP-OES) (Perkin−Elmer, Model Optima 2000
DV) after microwave digestion (Perkin−Elmer/AntonPaar
Multiwave 3000) with HNO −H O .
2
(
Environ. Sci. Technol. 2006, 40, 3075−3081.
(5) Chaplin, B. P.; Shapley, J. R.; Werth, C. J. Environ. Sci. Technol.
2007, 41, 5491−5497.
3
2
2
Aqueous Analysis. Concentrations of bromate and bromide
were quantified by ion chromatography with conductivity
detection (IC-CD) (Dionex ICS-2000). An IonPac AS19
column maintained at 30 °C was used as the stationary phase,
and a 32 mM KOH solution with a flow rate of 1.0 mL/min
was used as the eluent. Solution pH was measured with a glass
pH electrode and pH meter (Thermo Scientific).
(6) Chinthaginjala, J. K.; Lefferts, L. Appl. Catal., B 2010, 101, 144−
1
49.
(
7) Davie, M. G.; Cheng, H. F.; Hopkins, G. D.; Lebron, C. A.;
Reinhard, M. Environ. Sci. Technol. 2008, 42, 8908−8915.
8) Shuai, D.; Chaplin, B. P.; Shapley, J. R.; Menendez, N. P.;
McCalman, D. C.; Schneider, W. F.; Werth, C. J. Environ. Sci. Technol.
010, 44, 1773−1779.
(
2
(
9) Xiong, Y.; Xia, Y. Adv. Mater. 2007, 19, 3385−3391.
(10) Crespo-Quesada, M.; Yarulin, A.; Jin, M.; Xia, Y.; Kiwi-Minsker,
ASSOCIATED CONTENT
Supporting Information
Details of chemicals; synthesis of Pd NPs; synthesis and surface
■
*
S
L. J. Am. Chem. Soc. 2011, 133, 12787−12794.
(11) Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. J.
Am. Chem. Soc. 2007, 129, 3665−3675.
modification of silica microspheres; synthesis of SiO @Pd and
2
(
12) Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.; Aloni, S.; Yin, Y. J. Am.
SiO @Pd@mSiO ; determination of TOF ; additional TEM
2
2
0
Chem. Soc. 2005, 127, 7332−7333.
13) Shao, M.; Yu, T.; Odell, J. H.; Jin, M.; Xia, Y. Chem. Commun.
011, 47, 6566−6568.
14) Johnson, J. A.; Makis, J. J.; Marvin, K. A.; Rodenbusch, S. E.;
Stevenson, K. J. J. Phys. Chem. C 2013, 117, 22644−22651.
15) Zhao, Z.; Arentz, J.; Pretzer, L. A.; Limpornpipat, P.; Clomburg,
J. M.; Gonzalez, R.; Schweitzer, N. M.; Wu, T.; Miller, J. T.; Wong, M.
S. Chem. Sci. 2014, 5, 3715−3728.
16) Fang, Y. L.; Heck, K. N.; Alvarez, P. J. J.; Wong, M. S. ACS
Catal. 2011, 1, 128−138.
17) Pretzer, L. A.; Song, H. J.; Fang, Y. L.; Zhao, Z.; Guo, N.; Wu,
T.; Arslan, I.; Miller, J. T.; Wong, M. S. J. Catal. 2013, 298, 206−217.
18) Shuai, D.; McCalman, D. C.; Choe, J. K.; Shapley, J. R.;
and SEM images of as-synthesized materials; time courses of
bromate reduction; zeta potential measurements with and
(
2
(
(
AUTHOR INFORMATION
Corresponding Author
■
*
(
Present Addresses
(
∥
Y. Wang: Department of Civil and Environmental Engineering
University of Wisconsin-Milwaukee, Milwaukee, WI 53211
(
Schneider, W. F.; Werth, C. J. ACS Catal. 2013, 3, 453−463.
(19) Diallo, A. K.; Ornelas, C.; Salmon, L.; Ruiz Aranzaes, J.; Astruc,
D. Angew. Chem., Int. Ed. 2007, 46, 8644−8648.
⊥
C. Werth: Dept. of Civil, Architectural and Environmental
Engineering University of Texas at Austin, Austin, TX 78712
(20) Thathagar, M. B.; ten Elshof, J. E.; Rothenberg, G. Angew.
Chem., Int. Ed. 2006, 45, 2886−2890.
Author Contributions
‡
(21) Mazumder, V.; Sun, S. J. Am. Chem. Soc. 2009, 131, 4588−4589.
These authors (Y.W. and J.L.) contributed to this work
(
22) Wilkinson, K. E.; Palmberg, L.; Witasp, E.; Kupczyk, M.; Feliu,
equally.
Notes
́
N.; Gerde, P.; Seisenbaeva, G. A.; Fadeel, B.; Dahlen, S. E.; Kessler, V.
G. ACS Nano 2011, 5, 5312−5324.
The authors declare no competing financial interest.
(23) Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P.;
Somorjai, G. A. Nat. Mater. 2009, 8, 126−131.
ACKNOWLEDGMENTS
(24) Lee, J.; Park, J. C.; Song, H. Adv. Mater. 2008, 20, 1523−1528.
■
(
25) Henning, A. M.; Watt, J.; Miedziak, P. J.; Cheong, S.;
This work was financially supported by the Academic
Excellence Alliance (AEA) program at King Abdullah
University of Science and Technology (KAUST) and NSF
Chemical, Bioengineering, Environmental, and Transport
Systems (No. CBET-0746453). We thank Jeffery Bertke and
Rudiger Laufhutte (Department of Chemistry at the University
of Illinois at Urbana−Champaign (UIUC)) for helping to
Santonastaso, M.; Song, M.; Takeda, Y.; Kirkland, A. I.; Taylor, S.
H.; Tilley, R. D. Angew. Chem., Int. Ed. 2013, 52, 1477−1480.
26) Polshettiwar, V.; Len, C.; Fihri, A. Coord. Chem. Rev. 2009, 253,
599−2626.
27) Li, W.; Zhao, D. Adv. Mater. 2013, 25, 142−149.
(28) Ge, J.; Zhang, Q.; Zhang, T.; Yin, Y. Angew. Chem. 2008, 120,
9056−9060.
(
2
(
3
558
dx.doi.org/10.1021/cs500971r | ACS Catal. 2014, 4, 3551−3559