Organic Letters
Letter
Past Success to the Development of New Reactions for the Future.
Organometallics 2019, 38, 3−35.
(6) For a seminal report on the Ni-catalyzed reductive cross-
electrophile coupling between aryl halides and alkyl halides, see:
Everson, D. A.; Shrestha, R.; Weix, D. J. Nickel-Catalyzed Reductive
Cross-Coupling of Aryl Halides with Alkyl Halides. J. Am. Chem. Soc.
2010, 132, 920−921.
(7) (a) Wang, S.; Qian, Q.; Gong, H. Nickel-Catalyzed Reductive
Coupling of Aryl Halides with Secondary Alkyl Bromides and Allylic
Acetate. Org. Lett. 2012, 14, 3352−3355. (b) Anka-Lufford, L. L.;
Prinsell, M. R.; Weix, D. J. Selective Cross-Coupling of Organic
Halides with Allylic Acetates. J. Org. Chem. 2012, 77, 9989−10000.
(c) Cui, X.; Wang, S.; Zhang, Y.; Deng, W.; Qian, Q.; Gong, H.
Nickel-catalyzed reductive allylation of aryl bromides with allylic
combination with well-established chemistry to functionalize
alkyl sulfones, this method serves as a platform from which
rapid diversification can be accomplished. As such, we
anticipate that this method will have meaningful impacts
within drug discovery and synthetic chemistry.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and characterization data for
acetates. Org. Biomol. Chem. 2013, 11, 3094−3097. (d) Correa, A.;
2
́
Leon, T.; Martin, R. Ni-Catalyzed Carboxylation of C(sp )- and
C(sp3)-O Bonds with CO2. J. Am. Chem. Soc. 2014, 136, 1062−1069.
(8) Dai, Y.; Wu, F.; Zang, Z.; You, H.; Gong, H. Ni-Catalyzed
Reductive Allylation of Unactivated Alkyl Halides with Allylic
Carbonates. Chem. - Eur. J. 2012, 18, 808−812.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
(9) (a) Liang, Z.; Xue, W.; Lin, K.; Gong, H. Nickel-Catalyzed
Reductive Methylation of Alkyl Halides and Acid Chlorides with
Methyl p-Tosylate. Org. Lett. 2014, 16, 5620−5623. (b) Liu, Y.;
Cornella, J.; Martin, R. Ni-Catalyzed Carboxylation of Unactivated
Primary Alkyl Bromides and Sulfonates with CO2. J. Am. Chem. Soc.
2014, 136, 11212−11215. (c) Ackerman, L. K. G.; Anka-Lufford, L.
L.; Naodovic, M.; Weix, D. J. Cobalt co-catalysis for cross-electrophile
coupling: diarylmethanes from benzyl mesylates and aryl halides.
Chem. Sci. 2015, 6, 1115−1119. (d) Molander, G. A.; Traister, K. M.;
O’Neill, B. T. Engaging Nonaromatic, Heterocyclic Tosylates in
Reductive Cross-Coupling with Aryl and Heteroaryl Bromides. J. Org.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to L. C. Campeau, Ben Sherry, Andrew Neel,
and Tiffany Piou (all from Merck) for feedback on our
manuscript. We would like to thank J. J. Yin (Merck), Ji Qi
(Merck), and Shiping Ye (Pharmaron) for assistance with
preparing sulfone reagents and ligands.
́
Chem. 2015, 80, 2907−2911. (e) Smith, R. T.; Zhang, X.; Rincon, J.
A.; Agejas, J.; Mateos, C.; Barberis, M.; García-Cerrada, S.; de Frutos,
O.; MacMillan, D. W. C. Metallaphotoredox-Catalyzed Cross-
3
3
Electrophile Csp − Csp Coupling of Aliphatic Bromides. J. Am.
Chem. Soc. 2018, 140, 17433−14438.
(10) (a) Zhao, Y.; Weix, D. J. Nickel-Catalyzed Regiodivergent
Opening of Epoxides with Aryl Halides: Co-Catalysis Controls
Regioselectivity. J. Am. Chem. Soc. 2014, 136, 48−51. (b) Zhao, Y.;
Weix, D. J. Enantioselective Cross-Coupling of meso-Epoxides with
Aryl Halides. J. Am. Chem. Soc. 2015, 137, 3237−3240.
(11) Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M. S.; Doyle,
A. G. Nickel-Catalyzed Enantioselective Reductive Cross-Coupling of
Styrenyl Aziridines. J. Am. Chem. Soc. 2017, 139, 5688−5691.
(12) (a) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A.
M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.;
Ackerman, L. K. G.; Weix, D. J. Decarboxylative Cross-Electrophile
Coupling of N-Hydroxyphthalimide Esters with Aryl Iodides. J. Am.
Chem. Soc. 2016, 138, 5016−5019. (b) Suzuki, N.; Hofstra, J. L.;
Poremba, K. E.; Reisman, S. E. Nickel-Catalyzed Enantioselective
Cross-Coupling of N-Hydroxyphthalimide Esters with Vinyl Bro-
mides. Org. Lett. 2017, 19, 2150−2153.
REFERENCES
■
(1) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland:
Increasing Saturation as an Approach to Improving Clinical Success. J.
Med. Chem. 2009, 52, 6752−6756.
(2) Lovering, F. Escape from Flatland 2: complexity and
promiscuity. MedChemComm 2013, 4, 515−519.
(3) For selected reviews, see: (a) Jana, R.; Pathak, T. P.; Sigman, M.
S. Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-
Coupling Reactions Using Alkyl-organometallics as Reaction Partners.
Chem. Rev. 2011, 111, 1417−1492. (b) Yan, M.; Lo, J. C.; Edwards, J.
T.; Baran, P. S. Radicals: Reactive Intermediates with Translational
Potential. J. Am. Chem. Soc. 2016, 138, 12692−12714. (c) Twilton, J.;
Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C.
The merger of transition metal and photocatalysis. Nature Rev. Chem.
2017, 1, 0052.
(13) (a) Yan, X.-B.; Li, C.-L.; Jin, W.-J.; Guo, P.; Shu, X.-Z.
Reductive coupling of benzyl oxalates with highly functionalized alkyl
bromides by nickel catalysis. Chem. Sci. 2018, 9, 4529−4534. (b) Ye,
Y.; Chen, H.; Sessler, J. L.; Gong, H. Zn-Mediated Fragmentation of
Tertiary Alkyl Oxalates Enabling Formation of Alkylated and Arylated
Quaternary Carbon Centers. J. Am. Chem. Soc. 2019, 141, 820−824.
(14) (a) Liao, J.; Basch, C. H.; Hoerrner, M. E.; Talley, M. R.;
Boscoe, B. P.; Tucker, J. W.; Garnsey, M. R.; Watson, M. P.
Deaminative Reductive Cross-Electrophile Couplings of Alkylpyr-
idinium Salts and Aryl Bromides. Org. Lett. 2019, 21, 2941−2946.
(b) Yue, H.; Zhu, C.; Shen, L.; Geng, Q.; Hock, K. J.; Yuan, T.;
Cavallo, L.; Rueping, M. Nickel-catalyzed C-N bond activation:
activated primary amines as alkylating reagents in reductive cross-
coupling. Chem. Sci. 2019, 10, 4430−4435. (c) Yi, J.; Badir, S. O.;
Kammer, L. M.; Ribagorda, M.; Molander, G. A. Deaminative
Reductive Arylation Enabled by Nickel/Photoredox Dual Catalysis.
Org. Lett. 2019, 21, 3346−3351. Ni, S.; Li, C.; Han, J.; Mao, Y.; Pan,
(4) For reviews, see: (a) Everson, D. A.; Weix, D. J. Cross-
Electrophile Coupling: Principles of Reactivity and Selectivity. J. Org.
Chem. 2014, 79, 4793−4798. (b) Moragas, T.; Correa, A.; Martin, R.
Metal-Catalyzed Reductive Coupling Reactions of Organic Halides
with Carbonyl-Type Compounds. Chem. - Eur. J. 2014, 20, 8242−
̈
8258. (c) Knappke, C. E. I.; Grupe, S.; Gartner, D.; Corpet, M.;
Gosmini, C.; Jacobi von Wangelin, A. Reductive Cross-Coupling
Reactions between Two Electrophiles. Chem. - Eur. J. 2014, 20,
6828−6842. (d) Weix, D. J. Methods and Mechanisms for Cross-
Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles. Acc.
Chem. Res. 2015, 48, 1767−1775. (e) Gu, J.; Wang, X.; Xue, W.;
Gong, H. Org. Chem. Front. 2015, 2, 1411−1421. (f) Richmond, E.;
Moran, J. Recent Advances in Nickel Catalysis Enabled by
Stoichiometric Metallic Reducing Agents. Synthesis 2018, 50, 499−
513.
(5) For a recent review on cross-coupling reactions, see: Campeau,
L.-C.; Hazari, N. Cross-Coupling and Related Reactions: Connecting
D
Org. Lett. XXXX, XXX, XXX−XXX