Ru(II) moiety in the complex. The intramolecular electron transfer
reaction rate was estimated to be ~2 ¥ 109 s-1 by laser flash
photolysis. The photoreduction of nitrite to NO proceeded until
the amount of NO generated was equal to about 10% of the
dinuclear complex despite the lack of any sacrificial reductants.
We thank Prof. Satoshi Fujii (Konan University) for suggesting
the NO trap method.
Notes and references
1 (a) W. G. Zumft, Microbiol. Mol. Biol. Rev., 1997, 61, 533; (b) S. Suzuki,
K. Kataoka, K. Yamaguchi, T. Inoue and Y. Kai, Coord. Chem. Rev.,
1999, 190–192, 245; (c) S. Suzuki, K. Kataoka and K. Yamaguchi, Acc.
Chem. Res., 2000, 33, 728.
2 (a) K. Kataoka, H. Furusawa, K. Takagi, K. Yamaguchi and S.
Suzuki, J. Biochem., 2000, 345; (b) M. J. Boulanger, M. Kukimoto, M.
Nishiyama, S. Horinouchi and E. P. Murphy, J. Biol. Chem., 2000, 275,
23957.
Fig. 3 Time profile of the absorbance at 503 nm due to the Ru(III) state by
laser flash photolysis (lex = 532 nm, FWHM 4 ns) of a deaerated CH3CN
solution of Ru–Cu (60 mM) at 298 K. Inset: time profile of the absorbance
at 503 nm due to the Ru(III) state by laser flash photolysis (lex = 400 nm,
FWHM ca. 300 fs) of a deaerated CH3CN solution of Ru–Cu (60 mM) at
298 K.
3 (a) W. B. Tolman, Inorg. Chem., 1991, 30, 4877; (b) P. P. Paul and
K. D. Karlin, J. Am. Chem. Soc., 1991, 113, 6331; (c) J. A. Halfen, S.
Mahapatra, M. M. Olmstead and W. B. Tolman, J. Am. Chem. Soc., 1994,
116, 2173; (d) N. Komeda, H. Nagao, Y. Kushi, G. Adachi, M. Suzuki,
A. Uehara and K. Tanaka, Bull. Chem. Soc. Jpn., 1995, 68, 581; (e) L.
Casella, O. Carugo, M. Gullotti, S. Doldi and M. Frassoni, Inorg. Chem.,
1996, 35, 1101; (f) J. A. Halfen, S. Mahapatra, E. C. Wilkinson, A. J.
Gengenbach, V. G. Young Jr., L. Que Jr. and W. B. Tolman, J. Am. Chem.
Soc., 1996, 118, 763; (g) E. Monzani, G. J. Anthony, A. Koolhaas, A.
Spandre, E. Leggieri, L. Casella, M. Gullotti, G. Nardin, L. Randaccio,
M. Fontani, P. Zanello and J. Reedijk, JBIC, J. Biol. Inorg. Chem.,
2000, 5, 251; (h) R. L. Richards and M. C. Durrant, J. Chem. Research
(S), 2002, 95; (i) W. B. Tolman, JBIC, J. Biol. Inorg. Chem., 2006, 11,
261.
transfer from the excited Ru(II) to Cu(II) moieties (*Ru(II)–
Cu(II) → Ru(III)–Cu(I)) in Ru–Cu and the back electron transfer
rate constant (Ru(III)–Cu(I) → Ru(II)–Cu(II)) were calculated to be
2.3 ¥ 109 and 8.3 ¥ 107 s-1, respectively. The latter value is somewhat
larger than the reported intramolecular electron transfer rate (1.1 ¥
107 s-1) from Mn(II) to photooxidised Ru(III) moieties in a Ru(II)–
Mn(II) complex (DG◦ = 0.59 eV).7
4 H. Yokoyama, K. Yamaguchi, M. Sugimoto and S. Suzuki, Eur. J. Inorg.
Chem., 2005, 1435.
5 (a) G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 86, 401; (b) A. Juris,
V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. V. Zelewsky,
Coord. Chem. Rev., 1988, 84, 85.
Conclusions
6 K. Yamaguchi, T. Okada and S. Suzuki, Inorg. Chem. Commun., 2006,
9, 989.
This is the first example of the photoreduction of nitrite to NO by
a binuclear complex in the absence of any sacrificial electron donor
reagents in CH2Cl2, and the photoinduced intramolecular electron
transfer reaction from the Ru(II) to Cu(II) moieties in the binuclear
Ru(II)–Cu(II) complex. The reaction rate of the photoreduction of
nitrite should be dependent on the concentration of the excited
7 M. L. A. Abrahamsson, H. B. Baudin, A. Tran, C. Philouze, K. E. Berg,
˚
M. K. Raymond-Johansson, L. Sun, B. Akermark, S. Styring and L.
Hammarstro¨m, Inorg. Chem., 2002, 41, 1534.
8 (a) S. Fujii, T. Yoshimura and H. Kamada, Chem. Lett., 1996, 785; (b) S.
Fujii, K. Kobayashi, S. Tagawa and T. Yoshimura, J. Chem. Soc., Dalton
Trans., 2000, 3310.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 10175–10177 | 10177
©