1748
A. Jarrahpour and M. Zarei
4
1
1
.7), 4.50 (H-3, d, 1H, J = 4.7), 6.56–7.71 (ArH, m, 4H), 8.53 (NH, brs,
13
H); C NMR (DMSO-d6) δ 57.1 (OMe), 59.1 (C-4), 84.4 (C-3), 124.7,
29.5, 136.3, 139.3 (aromatic carbons), 165.9 (CO, β-lactam); GC-MS
+
m/z = 222 [M ]; Anal. Calcd for C10H10N2O4: C, 54.05; H, 4.54; N,
12.61. Found: C, 54.11; H, 4.63; N, 12.58.
REFERENCES
[
1] K. Smith, Ed., Solid Supports and Catalysis in Organic Synthesis (Ellis Horwood,
New York, 1992).
[
[
2] V. K. Yadav and K. K. Kapoor, Tetrahedron Lett., 35, 9481–9484 (1994).
3] A. K. Banerjee, M. S. L Mimo, and W. Vera Vegas, Russ. Chem. Rev., 70, 971–990
(2001).
[
[
[
[
[
4] F. Toda, Acc. Chem. Res., 28, 480–486 (1995).
5] G. W. V. Cave, C. L. Raston, and J. L. Scott, Chem. Commun., 2159–2169 (2001).
6] F. Toda and K. Tanaka, Chem. Rev., 100, 1025–1074 (2000).
7] A. Basak, K. Chandra, R. Pal, and S. C. Ghosh, Synlett, 1585–1588 (2007).
8] (a) R. B. Morin and H. Gorman, Ed., Chemistry and Biology of β-Lactam Antibiotics
(Acadamic Press, New York, 1982), Vol 1; (b) P. G. Sammes, Ed., Topics in Antibiotic
Chemistry (Ellis Horwood Ltd., New York, 1980), Vol. 3; (c) J. O’Sullivan and E.
P. Abraham, Antibiotics (Springer-Verlag, Berlin, 1981), Vol. IV; (d) G. Lukacs and
M. Ohno, Eds., Recent Progress in the Chemical Synthesis of Antibiotics (Springer,
Berlin, 1990).
[
9] (a) R. M. Adlington, J. E. Baldwin, B. Chen, S. L. Cooper, W. McCoull, G. J. Pritchard,
T. J. Howe, G. W. Becker, R. B. Hermann, A. M. McNulty, and B. L. Neubauer, Bioorg.
Med. Chem. Lett., 7, 1689–1694 (1997); (b) J. C. Sutton, S. A. Bolton, K. S. Harti,
M. H. Huang, G. Jacobs, W. Meng, G. Zhao, and G. S. Bisacchi, Bioorg. Med. Chem.
Lett., 14, 2233–2239 (2004); (c) R. Gonzalez-Muniz, E. De Clercq, J. Balzarini, G.
G. Navarro, J. P. De Vega, and C. Anderi, Bioorg. Med. Chem. Lett., 14, 2253–2256
(2004); (d) J. Tozsera, T. Sperka, J. Pitlik, and P. Bagossia, Bioorg. Med. Chem. Lett.,
15, 3086–3090 (2005); (e) J. Marchand-Brynaert, G. Dive, M. Galleni, and and S.
Gerard, Bioorg. Med. Chem., 12, 129–138 (2004); (f) X. Bai, X. Xu, R. Fu, J. Chen,
and S. Chen, Bioorg. Med. Chem. Lett., 17, 101–104 (2007); (g) K. G. Desai and K.
R. Desai, Bioorg. Med. Chem., 14, 8271–8279 (2006); (h) B. K. Banik, F. F. Becker,
and I. Banik, Bioorg. Med. Chem., 13, 3611–3622 (2005).
[
10] (a) B. Alcaide, P. Almendros, and C. Aragoncillo, Chem. Rev., 107, 4437–4492 (2007);
b) B. Alcaide and P. Almendros, Synlett, 381–393 (2002); (c) B. Alcaide and P.
Almendros, Chem. Soc. Rev., 30, 226–240 (2001); (d) I. Ojima, Acc. Chem. Res., 28,
83–389 (1995).
11] (a) H. Ge, J. T. Spletstoser, Y. Yang, M. Kayser, and G. I. Georg, J. Org. Chem., 72,
56–759 (2007); (b) M. Suffness, Taxol Science and Applications (CRC Press, Boca
(
3
[
7
Raton, FL, USA, 1995).
[12] F. P. Cossio, B. Lecea, and C. Palomo, J. Chem. Soc., Chem. Commun., 1743–1744
(
1987).
13] (a) E. Bandini, G. Favi, G. Martelli, M. Panunzio, and G. Piersanti, Org. Lett., 2,
077–1079 (2000); (b) D. J. Hart, K.-I. Kanai, D. G. Thomas, and T.-K. Yang, J. Org.
[
1
Chem., 48, 289–294 (1983).
[14] (a) A. Jarrahpour and M. Zarei, Molecules, 12, 2364–2379 (2007); (b) P. Imbach, M.
Lang, C. Garcia-Echeverria, V. Guagnano, M. Noorani, J. Roesel, F. Bitsch, G. Rihs,