10.1002/anie.201902903
Angewandte Chemie International Edition
COMMUNICATION
from cyclobutenes, see: (g) A. Misale, S. Niyomchon and N. Maulide, Acc.
Chem. Res., 2016, 49, 2444–2458. (h) C. Souris, A. Misale, Y. Chen, M.
Luparia and N. Maulide, Org. Lett., 2015, 17, 4486–4489. (i) M. Berger, Y. Chen,
K. Bampali, M. Ernst and N. Maulide, Chem. Commun., 2018, 54, 2008–2011.
(10) For examples of all-carbon sulfurane formation, see: (a) Khim, Y. H.; Oae,
S. Bull. Chem. Soc. Jpn. 1969, 42, 1968–1971. (b) B. M. Trost, R. Larochelle
and R. C. Atkins, J. Am. Chem. Soc., 1969, 91, 2175–2177. (c) B. M. Trost and
H. C. Arndt, J. Am. Chem. Soc., 1973, 95, 5288–5298. For examples of related
oxy-sulfuranes generated from sulfoxides, see: (d) S. Oae, T. Kawai and N.
Furukawa, Tetrahedron Lett., 1984, 25, 69–72. (e) S. Oae, Phosphorous Sulfur
Relat. Elem., 1986, 27, 13–29. (f) S. Oae, T. Kawai, N. Furukawa and F.
Iwasaki, J. Chem. Soc., Perkin Trans. 2, 1987, 405–411. (g) S. Oae, T. Takeda,
T. Kawai and N. Furukawa, Phosphorous Sulfur Relat. Elem., 1987, 34, 133–
137. (h) S. Wakabayashi, M. Ishida, T. Takeda and S. Oae, Tetrahedron Lett.,
1988, 29, 4441–4444. (i) S. Wakabayashi, T. Tanaka, Y. Kubo, J. Uenishi and S.
Oae, Bull. Chem. Soc. Jpn., 1989, 62, 3848–3850. (j) S. Oae, T. Takeda, S.
Wakabayashi, F. Iwasaki, N. Yamazaki and Y. Katsube, J. Chem. Soc., Perkin
Trans. 2, 1990, 273–276. (k) S. Oae and N. Furukawa, Adv. Heterocycl. Chem.,
1990, 48, 1–63. (l) S. Oae and Y. Uchida, Acc. Chem. Res., 1991, 24, 202–208.
(m) S. Oae, Pure Appl. Chem., 1996, 68, 805–812. (n) S. Oae, T. Takeda, J.
Uenishi and S. Wakabayashi, Phosphorus. Sulfur. Silicon Relat. Elem., 1996,
115, 179–182.
(11) For examples of sulfurane ligand coupling reactions in synthesis, see: (a) R.
W. Baker, D. C. R. Hockless, G. R. Pocock, M. V Sargent, B. W. Skelton, A. N.
Sobolev, E. Twiss (née Stanojevic) and A. H. White, J. Chem. Soc., Perkin
Trans. 1, 1995, 2615–2629. (b) R. W. Baker, J. N. H. Reek and B. J. Wallace,
Tetrahedron Lett., 1998, 39, 6573–6576. (c) R. W. Baker, S. O. Rea, M. V
Sargent, E. M. C. Schenkelaars, T. S. Tjahjandarie and A. Totaro, Tetrahedron,
2005, 61, 3733–3743.
(12) W. M. Dean, M. Šiaučiulis, T. E. Storr, W. Lewis and R. A. Stockman,
Angew. Chem. Int. Ed., 2016, 55, 10013–10016.
(13) For recent reviews on the interrupted Pummerer reaction, see: (a) L. H. S.
Smith, S. C. Coote, H. E. Sneddon and D. J. Procter, Angew. Chem. Int. Ed.,
2010, 49, 5832–5844. (b) A. P. Pulis and D. J. Procter, Angew. Chem. Int. Ed.,
2016, 55, 9842–9860. (c) T. Yanagi, K. Nogi and H. Yorimitsu, Tetrahedron
Lett., 2018, 59, 2951–2959. For recent examples of interrupted Pummerer and
related reactions, see: (d) D. Kaldre, I. Klose and N. Maulide, Science, 2018,
361, 664–667. (e) G. Hu, J. Xu and P. Li, Org. Chem. Front., 2018, 5, 2167–
2170. (f) M. Šiaučiulis, S. Sapmaz, A. P. Pulis and D. J. Procter, Chem. Sci.,
2018, 9, 754–759. (g) T. Yanagi, S. Otsuka, Y. Kasuga, K. Fujimoto, K.
Murakami, K. Nogi, H. Yorimitsu and A. Osuka, J. Am. Chem. Soc., 2016, 138,
14582–14585. (h) J. A. Fernández-Salas, A. J. Eberhart and D. J. Procter, J.
Am. Chem. Soc., 2016, 138, 790–793. (i) A. J. Eberhart, H. Shrives, Y. Zhang,
A. Carrër, A. V. S. Parry, D. J. Tate, M. L. Turner and D. J. Procter, Chem. Sci.,
2016, 7, 1281–1285. (j) J. A. Fernández-Salas, A. P. Pulis and D. J. Procter,
Chem. Commun., 2016, 52, 12364–12367. (k) A. J. Eberhart, H. J. Shrives, E.
Álvarez, A. Carrër, Y. Zhang and D. J. Procter, Chem. - Eur. J., 2015, 21, 7428–
7434. (l) G. Hu, J. Xu and P. Li, Org. Lett., 2014, 16, 6036–6039 (m) B. Peng, X.
Huang, L. G. Xie and N. Maulide, Angew. Chem. Int. Ed., 2014, 53, 8718–8721.
(n) X. Huang, M. Patil, C. Farès, W. Thiel and N. Maulide, J. Am. Chem. Soc.,
2013, 135, 7312–7323. (o) X. Huang and N. Maulide, J. Am. Chem. Soc., 2011,
133, 8510–8513. (p) T. Kobatake, S. Yoshida, H. Yorimitsu and K. Oshima,
Angew. Chem. Int. Ed., 2010, 49, 2340–2343. (q) S. Yoshida, H. Yorimitsu and
K. Oshima, Org. Lett., 2009, 11, 2185–2188. (r) S. Akai, N. Kawashita, H. Satoh,
Y. Wada, K. Kakiguchi, I. Kuriwaki and Y. Kita, Org. Lett., 2004, 6, 3793–3796.
(s) K. Colas, R. Martín-Montero and A. Mendoza, Angew. Chem. Int. Ed., 2017,
56, 16042–16046.
(14) (a) V. G. Nenajdenko, P. V. Vertelezkij, I. D. Gridnev, N. E. Shevchenko
and E. S. Balenkova, Tetrahedron, 1997, 53, 8173–8180. (b) M. H. Aukland, F.
J. T. Talbot, J. A. Fernández-Salas, M. Ball, A. P. Pulis and D. J. Procter,
Angew. Chem. Int. Ed., 2018, 57, 9785–9789.
(15) (a) H. J. Shrives, J. A. Fernández-Salas, C. Hedtke, A. P. Pulis and D. J.
Procter, Nat. Commun., 2017, 8, 14801–14807. (b) Z. He, H. J. Shrives, J. A.
Fernández-Salas, A. Abengózar, J. Neufeld, K. Yang, A. P. Pulis and D. J.
Procter, Angew. Chem. Int. Ed., 2018, 57, 5759–5764. (c) K. Yang, A. P. Pulis,
G. J. P. Perry and D. J. Procter, Org. Lett., 2018, 20, 7498–7503. For other
uses of benzothiophenium salts, see: (d) T. Kitamura, B.-X. Zhang and Y.
Fujiwara, J. Org. Chem., 2003, 68, 731–735. (e) T. Kitamura, M. Miyaji, S. Soda
and H. Taniguchi, J. Chem. Soc. Chem. Commun., 1995, 1375. (f) T. Kitamura,
K. Morizane, H. Taniguchi and Y. Fujiwara, Tetrahedron Lett., 1997, 38, 5157–
5160. (g) B. Waldecker, F. Kraft, C. Golz and M. Alcarazo, Angew. Chem. Int.
Ed., 2018, 57, 12538–12542.
(16) Biaryls bearing 2-organosulfanyl substituents are often difficult to prepare
due to poisoning of the metal catalyst by coordination of sulfur, see: D. Vasu, J.
N. Hausmann, H. Saito, T. Yanagi, H. Yorimitsu and A. Osuka, Asian J. Org.
Chem., 2017, 6, 1390–1393, and references therein.
(17) Y. Xie, B. Zhou, S. Zhou, S. Zhou, W. Wei, J. Liu, Y. Zhan, D. Cheng, M.
Chen, Y. Li, B. Wang, X. Xue and Z. Li,ChemistrySelect, 2017, 2, 1620–1624.
(18) (a) L. Melzig, C. B. Rauhut, N. Naredi-rainer and P. Knochel, Chem. - Eur.
J., 2011, 6, 5362–5372. (b) A. Kina, H. Miki, Y.-H. Cho and T. Hayashi, Adv.
Synth. Catal., 2004, 346, 1728–1732. (c) T. Shimada, Y. H. Cho and T. Hayashi,
J. Am. Chem. Soc., 2002, 124, 13396–13397.
This article is protected by copyright. All rights reserved.