Organic Letters
Letter
under high dilution solution phase conditions by slowly adding a
AUTHOR INFORMATION
■
*
mixture of linear precursor 21, HATU, and HOAt in CH Cl /
2
2
DMF (9:1) to a stirring solution of DIPEA in CH Cl . LC-MS
2
2
analysis of a crude aliquot after addition of the coupling mixture
indicated rapid consumption of the linear peptide and the
formation of two closely eluting products in a 1:2 ratio, both of
which exhibited the correct mass of the cyclic product. Prolonged
heating at 50 °C of an aqueous acetonitrile solution of these
products with monitoring by LC−MS indicated that the two
products were stable to interconversion. This suggested that the
cyclic products were likely to be epimers resulting from C-
terminal epimerization during macrocyclisation rather than cis−
trans rotational isomers at the N-methylated amide bonds.
However, our attempts to improve this ratio by modifying either
the base, coupling reagents or solvent were all unsuccessful.
Subsequent RP-HPLC purification of the reaction mixture
suggested the earlier eluting product to be YM-280193 (1), as its
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the Maurice Wilkins Centre for Molecular
Biodiscovery for financial support.
■
REFERENCES
■
(
1) Taylor, F.; Huffman, M. D.; Macedo, A. F.; Moore, T. H. M.; Burke,
M.; Smith, G. D.; Ward, K.; Ebrahim, S. Cochrane Database Syst. Rev.
2013, DOI: 10.1002/14651858.CD004816.pub5.
(2) Weitz, J. I.; Eikelboom, J. W.; Samama, M. M. Chest 2012, 141,
E120s.
1
(3) Stitham, J.; Vanichakarn, P.; Ying, L.; Hwa, J. Curr. Mol. Med. 2014,
H NMR spectrum exhibited an analogous mixture of con-
1
4, 909.
formers (10:2, CD CN) present in naturally occurring 1.
3
(4) Taniguchi, M.; Nagai, K.; Arao, N.; Kawasaki, T.; Saito, T.;
1
13
Furthermore, both the H and C spectroscopic data of the
major conformer of synthetic 1 were in agreement with the
tabulated major conformer signals of isolated (1) (see the
Moritani, Y.; Takasaki, J.; Hayashi, K.; Fujita, S.; Suzuki, K.; Tsukamoto,
S. J. Antibiot. 2003, 56, 358.
(5) Taniguchi, M.; Suzumura, K.; Nagai, K.; Kawasaki, T.; Takasaki, J.;
5
Supporting Information). Synthetic 1 was characterized by LC−
Sekiguchi, M.; Moritani, Y.; Saito, T.; Hayashi, K.; Fujita, S.; Tsukamoto,
S.; Suzuki, K. Bioorg. Med. Chem. 2004, 12, 3125.
(6) Flaumenhaft, R.; Dilks, J. R. Mini-Rev. Med. Chem. 2008, 8, 350.
MS with purity >95%, and HRMS confirmed formation of the
desired macrolactam product (calculated and observed mass of
(
7) Taniguchi, M.; Suzumura, K.; Nagai, K.; Kawasaki, T.; Saito, T.;
Takasaki, J.; Suzuki, K.; Fujita, S.; Tsukamoto, S. Tetrahedron 2003, 59,
533.
8) Takasaki, J.; Saito, T.; Taniguchi, M.; Kawasaki, T.; Moritani, Y.;
Hayashi, K.; Kobori, M. J. Biol. Chem. 2004, 279, 47438.
8
11.3854 and 811.3857 respectively, see the Supporting
Information). Moreover, IR spectral analysis of synthetic 1 was
in agreement with the reported data of isolated 1, and
4
(
comparable optical rotation of synthetic 1 [α] −52.0 (c 0.08,
D
MeOH) with isolated 1 [α] −61.3 (c 0.30, MeOH) further
D
(
(
(
9) InnoCentive 2012, Synthesis of YM Depsipeptide.
10) Kent, S. B. H. Annu. Rev. Biochem. 1988, 57, 957.
11) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
5
verified the elucidated structure of the natural product. Initial
biological evaluation of synthetic 1 suggested some activity;
however, we have insufficient material to provide statistically
significant results at this stage. Regrettably, the native material
was not available for direct comparison.
(12) Lukszo, J.; Patterson, D.; Albericio, F.; Kates, S. A. Lett. Pept. Sci.
1996, 3, 157.
(13) Strumeyer, D. H.; White, W. N.; Koshland, D. E. Proc. Natl. Acad.
Sci. U.S.A. 1963, 50, 931.
In conclusion, we herein report the first total synthesis of YM-
80193 1, using a combination of solution and solid-phase
(
(
14) Photaki, I. J. Am. Chem. Soc. 1963, 85, 1123.
15) Rich, D. H.; Tam, J.; Mathiapa, P.; Grant, J. A.; Mabuni, C. J.
2
synthesis. The monomer and dipeptide fragments were prepared
using conventional chemistry and subsequently assembled on 2-
CTC resin. The low reactivity of the side-chain hydroxyl groups
of Ac-Thr(OH)-D-Pla-COOH (15) and Fmoc-β-Hyleu(OH)-
COOH (23) allowed us to incorporate these residues with
minimal protection during Fmoc-SPPS. Pleasingly, the N-
MeDha residue was installed selectively demonstrating the first
on-resin application of bis-alkylation−elimination of cysteine in
Fmoc-SPPS. The powerful coupling reagent HATU was used for
both solid-phase couplings onto the poorly reactive N-
methylated residues and for the challenging solution-phase
macrolactamization reaction between the hindered N-terminal
Chem. Soc., Chem. Commun. 1974, 897.
16) Yamada, M.; Miyajima, T.; Horikawa, H. Tetrahedron Lett. 1998,
9, 289.
17) Hashimoto, K.; Sakai, M.; Okuno, T.; Shirahama, H. Chem.
Commun. 1996, 1139.
(18) Okeley, N. M.; Zhu, Y. T.; van der Donk, W. A. Org. Lett. 2000, 2,
(
3
(
3603.
(19) Davies, J. S. J. Pept. Sci. 2003, 9, 471.
(
(
20) White, C. J.; Yudin, A. K. Nat. Chem. 2011, 3, 509.
21) Wade, J. D.; Mathieu, M. N.; Macris, M.; Tregear, G. W. Lett. Pept.
Sci. 2000, 7, 107.
(22) Teixido, M.; Albericio, F.; Giralt, E. J. Pept. Res. 2005, 65, 153.
(23) Barlos, K.; Gatos, D.; Kapolos, S.; Poulos, C.; Schafer, W.; Yao, W.
N,O-Me Thr and the C-terminal β-Hyleu residues. We envisage
2
Q. Int. J. Pept. Prot. Res. 1991, 38, 555.
that further side-chain esterification of this core cyclic backbone
(24) Dhimitruka, H.; SantaLucia, J. Org. Lett. 2006, 8, 47.
(1) with an appropriately protected β-Hyleu residue will afford
(25) Thaler, A.; Seebach, D.; Cardinaux, F. Helv. Chim. Acta 1991, 74,
the more potent YM-molecules 2−4 in due course. Importantly,
628.
(26) Belokon, Y. N.; Kochetkov, K. A.; Ikonnikov, N. S.; Strelkova, T.
V.; Harutyunyan, S. R.; Saghiyan, A. S. Tetrahedron: Asymmetry 2001,
1
13
good agreement of the spectroscopic data ( H NMR, C NMR,
HRMS, IR) and optical rotation of synthetic 1 with naturally
occurring 1 confirms the structure of YM-280193 elucidated by
1
2, 481.
5
(27) Chalker, J. M.; Gunnoo, S. B.; Boutureira, O.; Gerstberger, S. C.;
Fernandez-Gonzalez, M.; Bernardes, G. J. L.; Griffin, L.; Hailu, H.;
Taniguchi et al.
Schofield, C. J.; Davis, B. G. Chem. Sci. 2011, 2, 1666.
ASSOCIATED CONTENT
(28) Holmes, T. J.; Lawton, R. G. J. Am. Chem. Soc. 1977, 99, 1984.
(29) Roberts, J. J.; Warwick, G. P. Biochem. Pharmacol. 1961, 6, 205.
(30) Richardson, J. P.; Chan, C. H.; Blanc, J.; Saadi, M.; Macmillan, D.
■
*
S
Supporting Information
Org. Biomol. Chem. 2010, 8, 1351.
D
Org. Lett. XXXX, XXX, XXX−XXX