Communication
ChemComm
4
5
6
J. Alem ´a n and S. Cabrera, Chem. Soc. Rev., 2013, 42, 774–793.
D. J. Liu and E. Y.-X. Chen, Green Chem., 2014, 16, 964–981.
R. A. Pramudita and K. Motokura, Green Chem., 2018, 20,
4
834–4843.
A. Doddi, M. Peters and M. Tamm, Chem. Rev., 2019, 119(12),
994–7112.
A. T. Biju, N. Kuhl and F. Glorius, Acc. Chem. Res., 2011, 44,
182–1195.
S. Gehrke and O. Holl o´ czki, Angew. Chem., Int. Ed., 2017, 56,
6395–16398.
7
8
9
6
1
1
1
0 G. Wang, W. Hu, Z. Hu, Y. Zhang, W. Yao, L. Li, Z. Fu and W. Huang,
Green Chem., 2018, 20, 3302–3307.
1
1
1 D. J. Nelson and S. P. Nolan, Chem. Soc. Rev., 2013, 42, 6723–6753.
2 V. Regnier, E. A. Romero, F. Molton, R. Jazzar, G. Bertrand and
D. Martin, J. Am. Chem. Soc., 2019, 141, 1109–1117.
3 D. Enders, O. Niemeier and A. Henseler,, Chem. Rev., 2007, 107,
5606–5655.
1
1
1
13
Fig. 3
C NMR spectra of (I) PEEK-IMMI, (II) PEEK-IMMX-1 and (III) PEEK-
4 Y. Suzuki, K. Yamauchi, K. Muramatsu and M. Sato, Chem. Commun.,
IMMX-21.
2004, 2770–2771.
5 C. J. Serpell, J. Cookson, A. L. Thompson, C. M. Brown and
P. D. Beer, Dalton Trans., 2013, 42, 1385–1393.
was immobilizes on the PEEK fiber, and the almost unchanged 16 V. P. Mehta, A. k. Sharma, S. G. Modha, S. Sharma, T. Meganathan,
V. S. Parmar and E. V. Eycken, J. Org. Chem., 2011, 76, 2920–2925.
7 M.-M. Gan, J.-Q. Liu, L. Zhang, Y.-Y. Wang, F. E. Hahn and
Y.-F. Han, Chem. Rev., 2018, 118, 9587–9641.
18 A. B. Powell, Y. Suzuki, M. Ueda, C. W. Bielawski and A. H. Cowley,
characteristic peaks of PEEK-IMMI, PEEK-IMMX-1 and PEEK-
IMMX-21 further proved the reliability of the fiber catalyst
before and after catalytic applications (Fig. 3).
1
J. Am. Chem. Soc., 2011, 133, 5218–5220.
In summary and to the best of our knowledge, we presented
here the first example of the application of commercially
available PEEK fiber as a novel material for recyclable
supported-NHC catalysts. The fiber-supported NHCs were gen-
erated in situ and used to facilitate the nucleophilic acylation of
fluorobenzenes with good product yields, and regenerated
conveniently for reuse up to 21 runs. Moreover, various tech-
nologies for the characterization of the fiber materials from
different stages further validated the reliability of this method.
These results revealed that the PEEK fiber was sufficiently
stable to endure the vigorous strong base or acid conditions
1
2
9 S. N. Riduan, J. Y. Ying and Y. Zhang, J. Catal., 2016, 343, 46–51.
0 J. Großeheilmann, J. Bandomir and U. Kragl, Chem. – Eur. J., 2015,
21, 18957–18960.
2
2
2
2
1 R. Zhong, A. C. Lindhorst, F. J. Groche and F. E. K u¨ hn, Chem. Rev.,
2017, 117, 1970–2058.
2 H. Zang, K. Wang, M. Zhang, R. Xie, L. Wang and E. Y.-X. Chen,
Catal. Sci. Technol., 2018, 8, 1777–1798.
3 C. A. Smith, M. R. Narouz, P. A. Lummis, I. Singh, A. Nazemi,
C.-H. Li and C. M. Crudden, Chem. Rev., 2019, 119, 4986–5056.
4 W. Liu, G.-Q. Tian, D.-D. Yang, G. Wu, S.-C. Chen and Y.-Z. Wang,
Polym. Chem., 2019, 10, 1526–1536.
2
2
5 L. Wang and E. Y.-X. Chen, ACS Catal., 2015, 5, 6907–6917.
6 D. Ragno, G. D. Carmine, A. Brandolese, O. Bortolini,
P. P. Giovannini and A. Massi, ACS Catal., 2017, 7, 6365–6375.
for NHC-mediated umpolung reactions, and also indicated that 27 L. Wang and E. Y.-X. Chen, Green Chem., 2015, 17, 5149–5153.
2
2
8 M. Gericke, J. Trygg and P. Fardim, RSC Adv., 2016, 6, 76707–76715.
9 A. Fujii, J.-C. Choi and K.-I. Fujita, Tetrahedron Lett., 2017, 58,
the enhanced catalytic activities of NHCs upon incorporation
with the fiber backbone which further contributed to its superior
1515–1518.
recyclability. Complementary studies on the PEKK-supported 30 E. Troschke, K. D. Nguyen, S. Paasch, J. Schmidt, G. Nickerl,
I. Senkovska, E. Brunner and S. Kaskel, Chem. – Eur. J., 2018, 24,
NHCs with different structures for nucleophilic acylation and
further applications of fiber-supported NHC catalysts in umpo-
lung reactions are now in progress.
We gratefully acknowledge the financial support by the
National Natural Science Foundation of China (21802034),
Henan Province Office of Education (19A310009), and Henan
Polytechnic University (B2016-45).
18629–18633.
3
3
3
3
3
3
1 X.-L. Shi, Q. Hu, F. Wang, W. Zhang and P. Duan, J. Catal., 2016,
337, 233–239.
2 X.-L. Shi., Y. Chen, Q. Hu, H. Meng and P. Duan, Ind. Eng. Chem.
Res., 2018, 57, 7450–7457.
3 X.-L. Shi, B. Sun, Q. Hu, Y. Chen and P. Duan, Green Chem., 2019, 21,
3573–3582.
4 X.-L. Shi, B. Sun, Y. Chen, Q. Hu, Y. Meng and P. Duan, J. Catal.,
2
019, 372, 321–329.
5 X.-L. Shi, B. Sun, Q. Hu, K. Liu, P. Li and B. Liu, Chem. Eng. J., 2020,
95, 125084.
6 M. T. Bishop, F. E. Karasz and P. S. Russe, Macromolecules, 1985, 18,
6–93.
3
Conflicts of interest
8
There are no conflicts to declare.
3
3
7 A. D’Amore and L. Nicolais, Compos. Manuf., 1992, 3, 25–31.
8 S. Rohrbach, A. J. Smith, J. H. Pang, D. L. Poole, T. Tuttle, S. Chiba
and J. A. Murphy, J. Catal., 2019, 58, 16368–16388.
Notes and references
3
9 Y. Suzuki, T. Toyota, F. Imada, M. Sato and A. Miyashita, Chem.
1
2
Y. Qin, L. Zhu and S. Luo, Chem. Rev., 2017, 117, 9433–9520.
Commun., 2003, 1314–1315.
P. Chauhan, S. Mahajan and D. Enders, Acc. Chem. Res., 2017, 50, 40 M. Makosza, J. Golinski and J. Baran, J. Org. Chem., 1984, 49,
809–2821.
1488–1494.
S. Bertelsena and K. A. Jørgensen, Chem. Soc. Rev., 2009, 38, 41 S. Ito, T. Kitamura, S. Arulmozhiraja, K. Manabe, H. Tokiwa and
178–2189. Y. Suzuki, Org. Lett., 2019, 21, 2777–2781.
2
3
2
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020