10.1002/anie.201805876
Angewandte Chemie International Edition
COMMUNICATION
Maclaren (Stanford University) for X-ray crystallographic
analysis.
Conflict of interest
The authors declare no conflict of interest.
Keywords: palladium • trimethylenemethane • asymmetric
catalysis • cycloaddition • amine
Scheme 8. Application of the amino-TMM chemistry to drug molecule
synthesis.
[1]
[2]
R. Huisgen, Angew. Chem. Int. Ed. Engl. 1968, 7, 321-328.
K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis,
Angew. Chem. 2002, 114, 1742-1773; Angew. Chem. Int. Ed. 2002, 41,
1668-1698.
The synthetic utility of the above amino-TMM chemistry was
further highlighted by its application to the synthesis of the drug
candidate 17, which was patented by Abbott Laboratory[6b] (now
Abbvie). In their patent, an 18-step linear synthesis was
implemented in 0.6 % overall yield. With this amino-TMM
chemistry, we could formally synthesize it in 8 linear steps (10
total steps) and the overall yield was improved to 7.5 % at
current stage (Scheme 8). The [3+2] cycloaddition process was
scaled up to give 0.91 g of 3q in 81 % yield. The exocyclic olefin
of 3q was selectively hydroborated[14] and oxidized[15] into
[3]
a) S. F. Martin, W. Li, J. Org. Chem. 1989, 54, 265-268; b) S. F. Martin,
J. M. Humphrey, A. Ali, M. C. Hillier, J. Am. Chem. Soc. 1999, 121,
866-867; c) A. Padwa, M. A. Brodney, M. Dimitroff, J. Org. Chem. 1998,
63, 5304-5305; d) A. D. Brosius, L. E. Overman, L. Schwink, J. Am.
Chem. Soc. 1999, 121, 700-709; e) W. Oppolzer, K. Keller, J. Am.
Chem. Soc. 1971, 93, 3836-3837.
[4]
[5]
a) S. Yamago, E. Nakamura, Organic Reactions. 2004,
doi:10.1002/0471264180.or061.01; b) B. M. Trost, Angew. Chem. Int.
Ed. Engl. 1986, 25, 1-20.
primary alcohol 14. Under hydrogenolysis conditions,
a
a) B. M. Trost, V. Ehmke, B. M. O’Keefe, D. A. Bringley, J. Am. Chem.
Soc. 2014, 136, 8213-8216; b) B. M. Trost, D. A. Bringley, P. S. Seng,
Org. Lett. 2012, 14, 234-237; c) B. M. Trost, D. A. Bringley, B. M.
O’Keefe, Org. Lett. 2013, 15, 5630–5633; d) B. M. Trost, S. M.
Silverman, J. Am. Chem. Soc. 2012, 134, 4941–4954; e) B. M. Trost, S.
M. Silverman, J. P. Stambuli, J. Am. Chem. Soc. 2011, 133, 19483–
19497; f) B. M. Trost, P. J. McDougall, O. Hartmann, P. T. Wathen, J.
Am. Chem. Soc. 2008, 130, 14960–14961; g) B. M. Trost, S. M.
Silverman, J. P. Stambuli, J. Am. Chem. Soc. 2007, 129, 12398–12399;
h) B. M. Trost, J. P. Stambuli, S. M. Silverman, U. Schwörer, J. Am.
Chem. Soc. 2006, 128, 13328–13329.
chemoselective deprotection of the carboxybenzyl (cbz) group of
14 was achieved in presence of the nitro and the benzophenone
imine group. Subsequently, the imine moiety was hydrolyzed in
one pot to release the primary amine, which was in situ
protected with di-tert-butyl dicarbonate (Boc2O) to give 15. The
nitro group of 15 was reduced to primary amine and protected
with benzyl chloroformate (CbzCl) in situ. Ultimately, the primary
alcohol was oxidized into the carboxylic acid 16 using Jones’
reagent. According to the Abbott synthesis[6b], the desired drug
candidate 17 could be obtained in one step from 16.
In summary, an important missing piece of the TMM story
has been resolved – for the first time a TMM donor bearing an
amino surrogate has been created. The availability of the amino-
TMM donor in 2 steps from commercial subunits enhances the
practicality. Most striking is the exceptional reactivity that this
amino-TMM donor possesses which leads to a very broad scope
of the method. The effectiveness of this substituent is also
indicated by the ability of the simple Feringa phosphoramidite
ligand L3 to induce high level of enantioselectivity while in the
the parent TMM and cyano substituted TMM chemistry the same
ligand only provided low to moderate enantioselectivity.[5] This
development came about from an underutilized deprotonation
approach in TMM chemistry. The results show that the
deprotonation approach to TMM proceeds with exceptional
regio-, diastereo-, and enantioselectivity as does the desilylative
approach[4b] – a fact that suggests the two approaches might
proceed through similar types of intermediates. Furthermore, the
mildness of the reaction conditions allows multiple additional
processing of the initial adducts in a one pot fashion from the
reactants of the TMM cycloaddition reaction. This
accomplishment sets the stage to access biologically active
targets with complex amino cycles.
[6]
a) Y. S. Babu, P. Chand, S. Bantia, S. Arnold, J. M. Kilpatrick, U.S.
Patent 8778997B2, 2014; b) C. J. Maring, Y. Chen, D. A. Degoey, V. L.
Giranda, D. J. Grampovnik, Y. G. Gu, W. M. Kati, D. J. Kempf, A.
Kennedy, A. C. Krueger, Z. Lin, D. L. Madigan, S. W. Muchmore, H. L.
Sham, K. D. Stewart, V. S. Stoll, M. Sun, G. T. Wang, S. Wang, M. C.
Yeung, C. Zhao, U.S. Patent 6518305B1, 2003; c) M. Andriantsiferana,
R. Besselièvre, C. Riche, H. Husson, Tetrahedr. Lett. 1977, 18, 2587-
2590. d) M. Iwatsuki, A. Nishihara-Tsukashima, A. Ishiyama, M.
Namatame, Y. Watanabe, S. Handasah, H. Pranamuda, B. Marwoto, A.
Matsumoto, Y. Takahashi, K. Otoguro, S. Ōmura, J. Antibiot. 2012, 65,
169–171. e) T. Kusama, N. Tanaka, K. Sakai, T. Gonoi, J. Fromont, Y.
Kashiwada, J. Kobayashi, Org. Lett. 2014, 16, 3916–3918. f) B. K.
Bhuyan, Biochem. Pharmacol. 1967, 16, 1411-1420.
[7]
[8]
a) I. Shimuzu, Y. Ohashi, J. Tsuji, Tetrahedr. Lett. 1984, 25, 5183–5186.
b) A. Yamamoto, Y. Ito, T. Hayashi, Tetrahedr. Lett. 1989, 30, 375–378.
a) C. K. Ingold, C. W. Shoppee, J. Chem. Soc. 1929, 1199. b) T.
Kauffmann, Angew. Chem., Int. Ed. Engl. 1974, 13, 627. c) W. H.
Pearson, M. A. Walters, K. D. Oswell, J. Am. Chem. Soc. 1986, 108,
2769. d) M. Matsumoto, M. Harada, Y. Yamashita, S. Kobayashi, Chem.
Commun. 2014, 50, 13041–13044. e) Y. Wu, L. Hu, Z. Li, L. Deng,
Nature 2015, 523, 445–450. f) C. Guo, J. Song, L.-Z. Gong, Org. Lett.
2013, 15, 2676–2679. g) M. Li, S. Berritt, P. J. Walsh, Org. Lett. 2014,
16, 4312. h) C.-X. Guo, W.-Z. Zhang, H. Zhou, N. Zhang, X.-B. Lu,
Chem. Eur. J. 2016, 22, 17156-17159. i) T. Niwa, T. Suehiro, H.
Yorimitsu, K. Oshima, Tetrahedron 2009, 65, 5125-5131. j) S.
Mangelinckx, S. T. Kadam, E. Semina, G. Callebaut, F. Colpaert, D. D.
Smaele, N. D. Kimpe, Tetrahedron 2013, 69, 3728-3735.
[9]
F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456–463.
[10] D. J. Gordon, R. F. Fenske, T. N. Nanninga, B. M. Trost, J. Am. Chem.
Soc. 1981, 103, 5974–5976.
Acknowledgements
[11] B. M. Trost, T. M. Lam, J. Am. Chem. Soc. 2012, 134, 11319–11321.
[12] CCDC 1843270 contains the supplementary crystallographic data for
this paper. These data are provided free of charge by The Cambridge
Crystallographic Data Centre.
We thank the NSF (CHE-1360634) and the NIH (GM033049) for
financial support of our programs. We acknowledge S. R. Lynch
(Stanford University) for his help with two-dimensional nuclear
magnetic resonance analysis. We also acknowledge Dr. Jana
This article is protected by copyright. All rights reserved.