1386
Helvetica Chimica Acta ± Vol. 88 (2005)
of the amount of product, applying the relationship [S]/[S]0 1 À ([P]/[S]0), where [P] is the concentration of
cycloalkyl phenyl sulfide at time t. Two sets of measurements were performed for each substrate.
Computational Methods. Geometries of cycloalkanes and their corresponding carbocations were fully
optimized at the MùllerÀPlesset level of theory [33 ± 36] using the 6-311G basis set (Table 3). Computations
were carried out with the program GAMESS [37]. The temperature was corrected to 273.15 K, and zero-point
energies were multiplied by the empirical factor of 0.89 [38].
REFERENCES
[1] H. C. Brown, R. S. Fletcher, R. B. Johannesen, J. Am. Chem. Soc. 1951, 73, 212.
[2] H. C. Brown, G. Ham, J. Am. Chem. Soc. 1956, 78, 2735.
[3] H. C. Brown, M. Borkowski, J. Am. Chem. Soc. 1952, 74, 1894.
[4] J. Sicher, Progr. Stereochem. 1962, 3, 202.
[5] L. Schotsmans, P. J. C. Fierens, T. Verlie, Bull. Soc. Chim. Belg. 1959, 68, 580.
Â
[6] J. Sicher, J. Jonas, M. Svoboda, O. Knessl, Collect. Czech. Chem. Commun. 1958, 23, 2141.
[7] J. O. Edwards, R. G. Pearson, J. Am. Chem. Soc. 1962, 84, 16.
[8] A. J. Parker, Chem. Rev. 1969, 69, 1.
[9] J. L. M. Abboud, M. Herreros, R. Notario, J. S. Lomas, J. Mareda, P. Müller, J. C. Rossier, J. Org. Chem.
1999, 64, 6401.
[10] J. L. M. Abboud, I. Alkorta, J. Z. Davalos, P. Müller, E. Quintanilla, J. C. Rossier, J. Org. Chem. 2003, 68,
3786.
[11] H. M. Rosenstock, K. Draxl, B. W. Steiner, J. J. Herron, J. Phys. Chem. Ref. Data Suppl. 1977, 6, 1.
[12] F. P. Lossing, J. L. Holmes, J. Am. Chem. Soc. 1984, 106, 6917.
[13] J. Zavada, J. Krupicka, J. Sicher, Collect. Czech. Chem. Commun. 1968, 33, 1393.
[14] H. C. Brown, K. Ichikawa, Tetrahedron 1957, 1, 221.
Ï
Â
[15] M. Havel, J. Krupicka, M. Svoboda, J. Zavada, J. Sicher, Collect. Czech. Chem. Commun. 1968, 33, 1429.
[16] A. Stein, C. W. Lehmann, P. Luger, J. Am. Chem. Soc. 1992, 114, 7684.
[17] S. Yamamoto, M. Nakata, T. Fukuyama, K. Kuchitsu, J. Phys. Chem. 1985, 89, 3298.
[18] F. A. L. Anet, J. Am. Chem. Soc. 1985, 107, 4335.
[19] J. G. Aston, M. L. Sagenkahn, G. J. Szasz, G. W. Moessen, H. F. Zuhr, J. Am. Chem. Soc. 1944, 66, 1171.
[20] E. L. Eliel, R. G. Haber, J. Am. Chem. Soc. 1959, 81, 1249.
[21] C. Bobbio, M. Schlosser, Eur. J. Org. Chem. 2001, 4533.
[22] M. Schlosser, M. Marull, Eur. J. Org. Chem. 2003, 1569.
Á
[23] F. Leroux, T. U. Hutschenreuter, C. Charriere, R. Scopelliti, R. W. Hartmann, Helv. Chim. Acta 2003, 86,
2671.
Â
[24] J. Zavada, J. Krupicka, J. Sicher, Collect. Czech. Chem. Commun. 1963, 28, 1664.
[25] S. Matsubara, H. Matsuda, T. Hamatani, M. Schlosser, Tetrahedron 1988, 44, 2855.
[26] W. E. Truce, K. R. Hollister, L. B. Lindy, J. E. Parr, J. Org. Chem. 1968, 33, 43.
[27] G. Szeimies, A. Schlosser, F. Philipp, P. Dietz, W. Mickler, Chem. Ber. 1978, 111, 1922.
[28] M. Ortiz, G. L. Larson, Synth. Commun. 1982, 12, 43.
[29] J. L. Kice, J. D. Campbell, J. Org. Chem. 1967, 32, 1631.
[30] G. Rabilloud, Bull. Soc. Chim. Fr. 1967, 384.
[31] M. G. Cabiddu, S. Cabiddu, E. Cadoni, R. Cannas, C. Fattuoni, S. Melis, Tetrahedron 1998, 54, 14095.
[32] V. N. Ipatieff, B. S. Friedman, J. Am. Chem. Soc. 1939, 61, 684.
[33] C. Mùller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
[34] M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 1988, 153, 503.
[35] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 281.
[36] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 275.
[37] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N.
Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14,
1347.
[38] W. J. Hehre, L. Radom, P. V. R. Schleyer, J. A. Pople, ꢀAb Initio Molecular Orbital Theoryꢁ, J. Wiley &
Sons, New York, 1986.
Received February 4, 2005