Organic Letters
Letter
thiazolidinone moiety can further be utilized in building the
second diversity site.
latrunculin-derived hybrid macrocyclic architectures. Further,
biological investigations using these compounds are ongoing,
and these studies will be made available when complete.
In a similar manner, we also succeeded in the synthesis of
macrocycles 19 starting from the pyran fragment 14 having
trans stitching functional groups at C-13 and C-15. In this
series, we faced no problem, and the 15-membered macrocyclic
ring formation appeared to be independent of the stereo-
chemistry of the functional group at C-15. Again, in this series,
five amino acids were used to validate the generality of this
reaction and to explore one of the diversity sites on the
macrocyclic ring skeleton. Although not attempted yet, the
utilization of β-amino acid moieties in our macrocyclic
synthesis planning in both series shown in Schemes 3 and 4
can lead to accessing 16-membered ring architectures.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed experimental section and spectral data are provided.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Author
Notes
Scheme 4. Similar Approach to Obtain Latrunculin-Based
Hybrid Macrocycles (19) Epimeric at C-15 of the Pyran
Moiety
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank DST and DBT (funding agencies from India) for the
financial support. M.A. and B.D. thank CSIR, India, for the
award of a Senior Research Fellowship. Our sincere thanks to
the DRILS analytical facility team for providing excellent
technical support.
REFERENCES
■
(1) (a) Spector, I.; Shochet, N. R.; Kashman, Y.; Groweiss, A. Science
1983, 219, 493. (b) Spector, I.; Shochet, N. R.; Blasberger, D.;
Kashman, Y. Cell. Motil. Cytoskeleton 1989, 13, 127. (c) El Sayed, K. A.;
Youssef, D. T.; Marchetti, D. J. Nat. Prod. 2006, 69, 219. (d) Amagata,
T.; Johnson, T. A.; Cichewicz, R. H.; Tenney, K.; Mooberry, S. L.;
Media, J.; Edelstein, M.; Valeriote, F. A.; Crews, P. J. Med. Chem. 2008,
51, 7234.
The utilization of cis and trans orientations of two stitching
moieties to forming a 15-membered ring allowed two different
sets of macrocyclic shapes 18 and 19. An example of 3D-
minimized structures of two types of macrocyclic compounds is
shown in Figure 3.
In conclusion, we developed a novel and efficient method-
ology to synthesize a key pyran fragment (13 and 14) of
latrunculin A and latrunculol A in gram quantities (note: the
synthesis was achieved on a 10.0 g scale for both
diastereomers). The amino acid moiety incorporated through
the C-13 hydroxyl group allowed us to access a unique set of
(2) Kashman, Y.; Groweiss, A.; Shmueli, U. Tetrahedron Lett. 1980,
21, 3629.
(3) Morton, W. M.; Ayscough, K. R.; McLaughlin, P. J. Nat. Cell Biol.
2000, 2, 376.
(4) (a) Zibuck, R.; Liverton, N. J.; Smith, A. B. J. Am. Chem. Soc.
1986, 108, 2451. (b) Furstner, A.; Kirk, D.; Fenster, M. D.; Aissa, C.;
̈
De Souza, D.; Muller, O. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8103.
(c) Furstner, A.; Kirk, D.; Fenster, M. D. B.; Aïssa, C.; De Souza, D.;
̈
Muller, O. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8103. (d) Furstner,
̈
̈
A.; Turet, L. Angew. Chem., Int. Ed. 2005, 44, 3462. (e) Furstner, A.;
De Souza, D.; Turet, L.; Fenster, M. D.; Parra-Rapado, L.; Wirtz, C.;
̈
Mynott, R.; Lehmann, C. W. Chemistry 2007, 13, 115. (f) Furstner, A.;
̈
Kirk, D.; Fenster, M. D.; Aissa, C.; De Souza, D.; Nevado, C.; Tuttle,
T.; Thiel, W.; Muller, O. Chemistry 2007, 13, 135. (g) Furstner, A.;
Nagano, T.; Muller, C.; Seidel, G.; Muller, O. Chemistry 2007, 13,
1452. (h) Kudrimoti, S.; Ahmed, S. A.; Daga, P. R.; Wahba, A. E.;
Khalifa, S. I.; Doerksen, R. J.; Hamann, M. T. Bioorg. Med. Chem. 2009,
17, 7517.
(5) Williams, B. D.; Smith, A. B. Org. Lett. 2013, 15, 4584.
(6) (a) Jimmidi, R.; Shroff, G. K.; Satyanarayana, M.; Reddy, B. R.;
Reddy, J.; Sawant, M. A.; Sitaswad, S. L.; Arya, P.; Mitra, P. Eur. J. Org.
Chem. 2014, 20, 1151. (b) Jogula, S.; Bhanudas Dasari, B.; Khatravath,
M.; Chandrasekar, G.; Kitambi, S. S.; Arya, P. Eur. J. Org. Chem. 2013,
19, 5036. (c) Guduru, S. K. R.; Chamakuri, S.; Chandrasekar, G.;
Kitambi, S. S.; Arya, P. ACS Med. Chem. Lett. 2013, 4, 666. (d) Dasari,
B.; Jogula, S.; Borhade, R.; Balasubramanian, S.; Chandrasekar, G.;
Kitambi, S. S.; Arya, P. Org. Lett. 2013, 15, 432. (e) Chamakuri, S.;
Guduru, S. K. R.; Pamu, S.; Chandrasekar, G.; Kitambi, S. S.; Arya, P.
Eur. J. Org. Chem. 2013, 19, 3959. (f) Aeluri, M.; Pramanik, C.; Chetia,
L.; Mallurwar, N. K.; Balasubramanian, S.; Chandrasekar, G.; Kitambi,
S. S.; Arya, P. Org. Lett. 2013, 15, 436. (g) Aeluri, M.; Gaddam, J.;
Davarakonda, V. K. S. T.; Chandrasekar, G.; Kitambi, S. S.; Arya, P.
Eur. J. Org. Chem. 2013, 19, 3955.
Figure 3. 3D structures with the energy minimization of hybrid
macrocycles 18a and 19a having cis- and trans-substituted pyran rings
at C-13 and C-15.
C
Org. Lett. XXXX, XXX, XXX−XXX