C O M M U N I C A T I O N S
Table 3. Cross-Coupling of (E)- and (Z)-1 with Aryl Chlorides
Table 5. Cross-Coupling of Tri- and Tetrasubstituted Silanols with
2-Chloroanisole
entry
silanol
R3
time, h
product
yield, %a
E/Zb
1
2
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(E)-1
(Z)-1
(Z)-1
(Z)-1
(Z)-1
(Z)-1
(Z)-1
4-CN
2
(E)-3b
(E)-3c
(E)-3d
(E)-3e
(E)-3f
(E)-3g
(E)-3h
(E)-3i
(E)-3j
(E)-3k
(E)-3l
(E)-3m
(E)-3a
(E)-3n
(Z)-3d
(Z)-3h
(Z)-3i
(Z)-3l
91
87
97
98
91
87
85
93
95
95
95
89
95
92
97
91
92
87
96
98
99.2:0.8
99.2:0.8
99.6:0.4
99.5:0.5
99.7:0.3
99.6:0.4
99.8:0.2
99.4:0.6
99.6:0.4
99.8:0.2
99.7:0.3
99.6:0.4
99.5:0.5
98.8:1.2
1.2:98.8
0.7:99.3
1.4:98.6
0.2:99.8
0.5:99.5
0.4:99.6
4-NO2
0.33
0.5
0.5
1
3
4-CO2t-Bu
4-COPh
4-CF3
2-pyridyl
3-pyridyl
H
4-Me
2-Me
2,6-Me2
4-OMe
2-OMe
4-CH2OTBS
4-CO2t-Bu
3-pyridine
H
2,6-Me2
2-OMe
4-CH2OTBS
4
entry
silanol
time, h
product
yield, %a
E/Zb
5
6
3
1
2
3
4
(E)-9c
(Z)-9d
(E)-10
(Z)-11
0.5
0.5
1.0
(E)-12
(Z)-12
(E)-13
(Z)-14
97
89
98
95
98.8:1.2
1.4:98.6
>99:1
7
1.5
1.5
2
8
9
0.75
<1:99
10
11
12c
13c
14
15
16
17
18
19c
20
2
2
3.5
3
1.5
0.33
1.5
1.5
2
3
1.5
a Yield of isolated, analytically pure product. b Determined by GC
analysis. c (E)-9/(Z)-9, 98.9:1.1. d (E)-9/(Z)-9, 1.5:98.5.
In conclusion, we have demonstrated a stereospecific and high
yielding cross-coupling of di-, tri- and tetrasubstituted alkenyl-
dimethylsilanolates with aryl chlorides. This method overcomes the
limitations associated with the cross-coupling of alkenylboronic
acids with aryl chlorides and thus affords a general synthesis of
aryl-substituted alkenes.
(Z)-3a
(Z)-3n
a Yield of isolated, analytically pure product. b Determined by GC
analysis. c Used 1.5 equiv of (E)-1 or (Z)-1 at 66 °C.
Acknowledgment. We are grateful to the National Institutes
of Health for generous financial support. (Grant R01 GM63167).
J.M.K. thanks Pfizer, Inc. and Johnson and Johnson PRI for
Graduate Fellowships. This paper is dedicated to the memory of
Prof. Nelson J. Leonard.
stereospecificity, functional group compatibility, and yield to afford
the (Z)-alkenyl products (entries 15-20). The characteristics of the
reaction of (Z)-1 in terms of the rate, specificity, and yield were
nearly identical to those of (E)-1.
Because of the problems associated with the coupling of
alkenylboronic acids with chlorides, we chose to test the coupling
of (E)- and (Z)-styrylsilanolates ((E)-7 and (Z)-7) which are much
more prone to isomerization. Although the reactions proceeded in
DME or toluene at 90 °C, they stalled and reduction products were
also detected. Remarkably, switching the solvent to dioxane (at 90
°C) led to complete conversion and very clean products. Even at
90 °C, the reaction proceeded with complete retention of the double-
bond geometry. Here again, the TBS-protected benzyl alcohol was
compatible under these reaction conditions (Table 4).
Supporting Information Available: Detailed experimental pro-
cedures and full characterization of all products. This material is
References
(1) (a) Miyaura, N. In Metal-Catalyzed Cross-Coupling Reactions; De Meijere,
A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 41-
123. (b) Mitchell, T. N. In Metal-Catalyzed Cross-Coupling Reactions;
De Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany,
2004; pp 125-161. (c) Denmark, S. E.; Sweis, R. F. In Metal-Catalyzed
Cross-Coupling Reactions; De Meijere, A., Diederich, F., Eds.; Wiley-
VCH: Weinheim, Germany, 2004; pp 163-216.
(2) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176-4211.
(3) (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998,
120, 9722-9723. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed.
1999, 38, 2411-2413. (c) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem.
Soc. 2000, 122, 4020-4028. (d) Gstottmayr, C. W. K.; Bohm, V. P. W.;
Herdtweck, E.; Grosche, M.; Herrmann, W. A. Angew. Chem., Int. Ed.
2002, 41, 1363-1365. (e) Barder, T. E.; Walker, S. D.; Martinelli, J. R.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685-4696. (f) Christmann,
U.; Vilar, R. Angew. Chem., Int. Ed. 2005, 44, 366-374.
Table 4. Cross-Coupling of (E)- and (Z)-7 with Aryl Chlorides
entry
silanola
R3
time, h
product
yield, %b
E/Zc
(4) (a) Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124,
6343-6348. (b) Su, W.; Urgaonkar, S.; Verkade, J. G. Org. Lett. 2004,
6, 1421-1424.
1
2
3
4
5
6
(E)-7
(E)-7
(E)-7
(Z)-7
(Z)-7
(Z)-7
4-CO2t-Bu
2,6-Me2
0.5
(E)-8d
(E)-8l
(E)-8n
(Z)-8d
(Z)-8l
(Z)-8n
89
91
94
94
90
97
99.9:0.1
99.7:0.3
99.6:0.4
0.5:99.5
0.3:99.7
0.5:99.5
1.25
1.25
0.5
(5) (a) Sahoo, A. K.; Oda, T.; Nakao, Y.; Hiyama, T. AdV. Synth. Cat. 2004,
346, 1715-1727. (b) Koike, T.; Mori, A. Synlett 2003, 1850-1852. (c)
Lee, H. M.; Nolan, S. P. Org. Lett. 2000, 2, 2053-2055. (d) Gouda, K.-
i.; Hagiwara, E.; Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1996, 61, 7232-
7233.
4-CH2OTBS
4-CO2t-Bu
2,6-Me2
1.25
1.25
4-CH2OTBS
(6) (a) Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44,
6173-6177. (b) Dai, Q.; Gao, W.; Liu, D.; Kapes, L. M.; Zhang, X. J.
Org. Chem. 2006, 71, 3928-3934. (c) Kudo, N.; Perseghini, M.; Fu, G.
C. Angew. Chem., Int. Ed. 2006, 45, 1282-1284. (d) Billingsley, K. L.;
Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45,
3484-3488. (e) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott,
N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101-4111.
(7) (a) Song, C.; Ma, Y.; Chai, Q.; Ma, C.; Jiang, W.; Andrus, M. B.
Tetrahedron 2005, 61, 7438-7446. (b) Navarro, O.; Marion, N.; Mei, J.;
Nolan, S. P. Chem.sEur. J. 2006, 12, 5142-5148.
a Used 1.5 equiv of (E)-7 or (Z)-7. b Yield of isolated, analytically pure
product. c Determined by GC or SFC analysis.
To further demonstrate the high stereospecificity and scope of
this reaction, a series of tri- and tetrasubstituted alkenyl-dimethyl-
silanols were tested in the cross-coupling reaction with 2-chloro-
anisole. Trisubstituted alkenylsilanolates (E)-9, (Z)-9, and (E)-10
afforded the desired products in high yields with high stereospeci-
ficity (Table 5, entries 1-3). Additionally, the tetrasubstiuted
alkenylsilanolate (Z)-11 afforded (Z)-14 in a high yield at a
comparable rate to the other alkenylsilanolates (Table 5, entry 4).
In fact, a substantial decrease in the reaction time was observed
for 9, 10, and 11 when compared to 1, illustrating a beneficial
influence of the steric bulk of the alkenylsilanolate.
(8) (a) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835-846.
(b) Denmark, S. E.; Ober, M. H. Aldrichimica Acta 2003, 36, 75-85. (c)
Denmark, S. E.; Baird, J. D. Chem.sEur. J. 2006, 12, 4954-4963.
(9) Denmark, S. E.; Baird, J. D. Org. Lett. 2006, 8, 793-795.
(10) Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc. 2004, 126, 4876-4882.
(11) de Jong, G. T.; Kovacs, A.; Bickelhaupt, F. M. J. Phys. Chem. A 2006,
110, 7943-7951.
(12) Denmark, S. E.; Smith, R. C. Synlett 2006, 2921-2928.
JA065988X
9
J. AM. CHEM. SOC. VOL. 128, NO. 50, 2006 15959