Organic Letters
Letter
(12) For a more detailed study of the C−O coupling step, see:
Huang, Z.; Lumb, J.-P. Angew. Chem., Int. Ed. 2016, 55, 11543−
1
(
1547.
Copies of NMR spectra (PDF)
13) (a) Weber, C.; Opatz, T. Bisbenzylisoquinoline Alkaloids. In
The Alkaloids: Chemistry and Biology; Knolker, H.-J., Ed.; Academic
̈
AUTHOR INFORMATION
Press, 2019; Vol. 81, pp 1−114, Chapter 1. (b) Shamma, M. The
Isoquinoline Alkaloids Chemistry and Pharmacology; Elsevier, 2012;
Vol. 25.
■
*
ORCID
(
14) Otto, N.; Ferenc, D.; Opatz, T. J. Org. Chem. 2017, 82, 1205−
1217.
(
15) (a) Kupchan, S. M.; Liepa, A. J.; Kameswaran, V.; Sempuku, K.
Present Address
J. Am. Chem. Soc. 1973, 95, 2995−3000. (b) Xu, W.; Huang, Z.; Ji, X.;
Lumb, J.-P. ACS Catal. 2019, 9, 3800−3810.
†
(16) Alkaloids. In Medicinal Natural Products; Dewick, P. M., Ed.;
Department of Chemistry, New York University, Silver
2
009; pp 311−420.
17) (a) Quideau, S.; Deffieux, D.; Pouyseg
of Phenols and Phenol Ethers. In Comprehensive Organic Synthesis II,
Center for Arts and Science, 100 Washington Square East,
New York, NY 10003, United States.
Notes
(
́
u, L. Oxidative Coupling
2
nd ed.; Knochel, P., Ed.; Elsevier: Amsterdam, 2014; pp 656−740.
The authors declare no competing financial interest.
(b) Esguerra, K. V. N.; Fall, Y.; Petitjean, L.; Lumb, J.-P. J. Am. Chem.
Soc. 2014, 136, 7662−7668.
(
18) (a) Evano, G.; Wang, J.; Nitelet, A. Org. Chem. Front. 2017, 4,
ACKNOWLEDGMENTS
■
2
480−2499. (b) Pitsinos, E. N.; Vidali, V. P.; Couladouros, E. A. Eur.
Financial support was provided by the Natural Sciences and
Engineering Council (NSERC) of Canada (Discovery Grant to
J.-P.L.); the Fonds de Recherche Quebecois Nature et
Technologies (FRQNT) (Team Grant to J.-P.L.); McGill
University Faculty of Science (Milton Leong Fellowship in
Science to Z.H.), and the FRQNT Center for Green
Chemistry and Catalysis (fellowship to X.J.).
J. Org. Chem. 2011, 2011, 1207−1222.
(
(
19) Blank, N.; Opatz, T. J. Org. Chem. 2011, 76, 9777−9784.
20) Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799−3802.
(21) For selected examples of desymmetrization in biosynthesis or
bioinspired synthesis, see: (a) Hu, X.; Maimone, T. J. J. Am. Chem.
Soc. 2014, 136, 5287−5290. (b) Miyabe, H.; Torieda, M.; Inoue, K.;
Tajiri, K.; Kiguchi, T.; Naito, T. J. Org. Chem. 1998, 63, 4397−4407.
(
c) Smith, W. L.; Urade, Y.; Jakobsson, P.-J. Chem. Rev. 2011, 111,
5
1
(
821−5865. (d) Goodhue, C. T.; Schaeffer, J. R. Biotechnol. Bioeng.
REFERENCES
■
971, 13, 203−214.
(
1) (a) Que, L.; Tolman, W. B. Nature 2008, 455, 333−340.
b) Trammell, R.; Rajabimoghadam, K.; Garcia-Bosch, I. Chem. Rev.
22) A version of this work first appeared on the ChemRxiv
(
(
2
019, 119, 2954−3031. (c) Allen, S. E.; Walvoord, R. R.; Padilla-
Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234−6458.
23) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J.
(
(
d) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851−863.
Am. Chem. Soc. 1996, 118, 4916−4917.
e) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105,
2
(
329−2364.
2) Stahl, S. S.; Alsters, P. L. Liquid Phase Aerobic Oxidation
Catalysis: Industrial Applications and Academic Perspectives; Wiley-
VCH: Weinheim, 2016.
(3) Borden, W. T.; Hoffmann, R.; Stuyver, T.; Chen, B. J. Am. Chem.
Soc. 2017, 139, 9010−9018.
(
4) (a) Esguerra, K. V. N.; Xu, W.; Lumb, J.-P. Chem. 2017, 2, 533−
549. (b) Esguerra, K. V. N.; Lumb, J.-P. Angew. Chem., Int. Ed. 2018,
5
(
7, 1514−1518.
5) For review articles, see: (a) Esguerra, K. V. N.; Lumb, J.-P.
Synthesis 2019, 51, 334−358. (b) Huang, Z.; Lumb, J.-P. ACS Catal.
019, 9, 521−555.
6) For related examples, see: (a) Esguerra, K. V. N.; Fall, Y.; Lumb,
2
(
J.-P. Angew. Chem. 2014, 126, 5987−5991. (b) Huang, Z.; Kwon, O.;
Huang, H.; Fadli, A.; Marat, X.; Moreau, M.; Lumb, J.-P. Angew.
Chem., Int. Ed. 2018, 57, 11963−11967.
(7) (a) Elwell, C. E.; Gagnon, N. L.; Neisen, B. D.; Dhar, D.; Spaeth,
A. D.; Yee, G. M.; Tolman, W. B. Chem. Rev. 2017, 117, 2059−2107.
(
b) Solomon, E. I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J. W.;
Cirera, J.; Qayyum, M.; Kieber-Emmons, M. T.; Kjaergaard, C. H.;
Hadt, R. G.; Tian, L. Chem. Rev. 2014, 114, 3659−3853.
(8) (a) Borovansky, J.; Riley, P. A. Melanins and Melanosomes; Wiley-
VCH: Weinheim, 2011. (b) Esguerra, K. V. N.; Lumb, J.-P. Synlett
015, 26, 2731−2738.
9) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K.
O.; Solomon, E. I.; Stack, T. D. P. Science 2005, 308, 1890−1892.
10) For review articles, see: (a) Rolff, M.; Schottenheim, J.; Decker,
2
(
(
H.; Tuczek, F. Chem. Soc. Rev. 2011, 40, 4077−4098. (b) Mirica, L.
M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013−
1
(
046.
11) Askari, M. S.; Esguerra, K. V. N.; Lumb, J.-P.; Ottenwaelder, X.
Inorg. Chem. 2015, 54, 8665−8672.
D
Org. Lett. XXXX, XXX, XXX−XXX