COMMUNICATIONS
Palladium-Catalyzed Carbonylations of Arylboronic Acids
(122300413203), and Technology Research and Development
Funds of Zhengzhou (141PRCYY516) for financial support.
References
[1] a) B. S. Furniss; A. J. Hannaford; P. W. G. Smith; A. R.
Tatchell, Vogelꢀs Textbook of Practical Organic Chemis-
try, 5th edn.; Wiley, New York, 1989; p 1266; b) R. C.
Larock, Comprehensive Organic Transformations, 2nd
edn., VCH: New York, 1989, p 881; c) A. C. Carmo,
L. K. C. de Souza, C. E. F. de Costa, E. Longo, J. R.
Zamian, G. N. da Rocha Filha, Fuel 2009, 88, 461; d) T.
Nishikubo, A. Kameyama, Y. Yamada, Y. J. Yoshida,
Polym. Sci. Part A: Polym. Chem. 1996, 34, 3531;
e) H. R. Ansari, A. J. Curtis, J. Soc. Cosmet. Chem.
1974, 25, 203.
Scheme 3. The ethoxycarbonylation of an estrone derivative.
method is extendable to other pharmaceutically rele-
vant molecules.
[2] a) A. Schoenberg, I. Bartoletti, R. F. Heck, J. Org.
Chem. 1974, 39, 3318; b) A. Schoenberg, R. F. Heck, J.
Org. chem. 1974, 39, 3327; c) A. Schoenberg, R. F.
Heck, J. Am. Chem. Soc. 1974, 96, 7761.
In summary, we have developed a mild and general
CO/CO2-free carbonylation protocol for the palladi-
um-catalyzed ethoxycarbonylation of arylboronic acid
derivatives. Notably, the advantage of this method is
that diethyl pyrocarbonate is a readily available and
an inexpensive carbonylation reagent. What is more,
this method offers a convenient alternative for
ethoxycarbonylation compared to conventional car-
bonylations using syngas or CO/CO2 directly. Avoid-
ing the use of high-pressure equipment is another
merit of this method.
[3] a) A. Brennführer, H. Neumann, M. Beller, Angew.
Chem. 2009, 121, 4176; Angew. Chem. Int. Ed. 2009, 48,
4114; b) X. F. Wu, H. Neumann, M. Beller, Chem. Soc.
Rev. 2011, 40, 4986; c) X. F. Wu, H. Neumann, M.
Beller, Chem. Rev. 2013, 113, 1; d) X. F. Wu, H. Neu-
mann, M. Beller, ChemSusChem 2013, 6, 229; e) Q.
Liu, H. Zhang, A. Lei, Angew. Chem. 2011, 123, 10978;
Angew. Chem. Int. Ed. 2011, 50, 10788; f) C. F. J. Bar-
nard, Organometallics 2008, 27, 5402; g) B. Gabriele, R.
Mancuso, G. Salerno, Eur. J. Org. Chem. 2012, 6825.
[4] a) W. Mägerlein, A. F. Indolese, M. Beller, Angew.
Chem. 2001, 113, 2940; Angew. Chem. Int. Ed. 2001, 40,
2856; b) R. H. Munday, J. R. Martinelli, S. L. Buchwald,
J. Am. Chem. Soc. 2008, 130, 2754; c) D. A. Watson, X.
Fan, S. L. Buchwald, J. Org. Chem. 2008, 73, 7096.
[5] a) T. Morimoto, K. Kakiuchi, Angew. Chem. 2004, 116,
5698; Angew. Chem. Int. Ed. 2004, 43, 5580; b) L. Wu,
Q. Liu, R. Jackstell, M. Beller, Angew. Chem. 2014,
126, 6426; Angew. Chem. Int. Ed. 2014, 53, 6310.
Experimental Section
Palladium-Catalyzed Carbonylations of Arylboronic
acids with Diethyl Pyrocarbonate; Typical Reaction
Procedure
Pd(OAc)2 ( 11.2 mg, 0.05 mmol, 5 mol%), PPh3 (52.4 mg,
0.20 mmol, 20 mol%), Na2CO3 (212 mg, 2.0 mmol,
2.0 equiv.), arylboronic acid (1.0 mmol, 1.0 equiv.), diethyl
pyrocarbonate ( 324.0 mg, 2.0 mmol, 2.0 equiv.) and dioxane
(3 mL) were placed in a dried glass reaction tube and the
air was replaced three times with argon. The reaction mix-
ture was stirred at 1108C for 16 h. After the mixture had
been cooled to room temperature it was extracted with
EtOAc and H2O. The combined organic layer was washed
with brine, and then dried over anhydrous Na2SO4. The sol-
vent was evaporated under vacuum to afford the crude reac-
tion mixture, which was then purified on silica gel plates to
produce the desired product. The products were character-
ized by 1H NMR, 13C NMR and LC-MS.
[6] R. Shang, Y. Fu, J. B. Li, S. L. Zhang, Q. X. Guo, L.
Liu, J. Am. Chem. Soc. 2009, 131, 5738.
[7] a) A. Wieckowska, R. Fransson, L. R. Odell, M.
Larhed, J. Org. Chem. 2011, 76, 978; b) R. L. Odell, F.
Russo, M. Larhed, Synlett 2012, 685; c) X. F. Wu, M.
Sharif, K. Shoaib, H. Neumann, A. Pews-Davtyan, P.
Langer, M. Beller, Chem. Eur. J. 2013, 19, 6230; d) P.
Baburajan, R. Senthilkumaran, K. P. Elango, New J.
Chem. 2013, 37, 3050.
[8] a) S. D. Friis, R. H. Taaning, A. T. Lindhardt, T.
Skrydstrup, J. Am. Chem. Soc. 2011, 133, 18114; b) P.
Hermange, T. M. Gøgsig, A. T. Lindhardt, R. H. Taan-
ing, T. Skrydstrup, Org. Lett. 2011, 13, 2444; c) T. M.
Gøgsig, D. U. Nielsen, A. T. Lindhardt, T. Skrydstrup,
Org. Lett. 2012, 14, 2536; d) D. U. Nielsen, K. Neu-
mann, R. H. Taaning, A. T. Lindhardt, A. Modvig, T.
Skrydstrup, J. Org. Chem. 2012, 77, 6155; e) C. Bran-
cour, T. Fukuyama, Y. Mukai, T. Skrydstrup, I. Ryu,
Org. Lett. 2013, 15, 2794; f) M. N. Burhardt, R. H.
Taaning, T. Skrydstrup, Org. Lett. 2013, 15, 948; g) S.
Korsager, R. H. Taaning, A. T. Lindhardt, T. Skrydstr-
up, J. Org. Chem. 2013, 78, 6112.
Acknowledgements
We are grateful to the Natural Science Foundation of China
(20772114, 21172200), Research Program of Fundamental
and
Advanced
Technology
of
Henan
Province
Adv. Synth. Catal. 2015, 357, 3104 – 3108
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3107