10.1002/anie.202006260
Angewandte Chemie International Edition
RESEARCH ARTICLE
regions (6.5 - 9.5 ppm) and upshifted methyl groups indicating
formation of the native tertiary structure (figs S121 - S123). A
comparison of the chemical shift values of the NH signals for 45
and 46 shows very little deviation across the majority of the
sequence (fig. S120). As expected, those residues flanking
modified position 48 do experience minor perturbations in
chemical shift due to the installed moiety.
Keywords: Conjugation
•
Cysteine
•
Deselenization
•
Desulfurization • Selenocysteine • Peptides • Radicals
References
[1]
[2]
[3]
E. A. Hoyt, P. M. Cal, B. L. Oliveira, G. J. Bernardes, Nat. Rev.
Chem. 2019, 3, 147-171.
O. Boutureira, G. J. L. Bernardes, Chem. Rev. 2015, 115, 2174-
2195.
J. N. deGruyter, L. R. Malins, P. S. Baran, Biochemistry 2017, 56,
3863-3873.
Conclusion
[4]
[5]
O. Koniev, A. Wagner, Chem. Soc. Rev. 2015, 44, 5495-5551.
N. Krall, F. P. Da Cruz, O. Boutureira, G. J. Bernardes, Nat. Chem.
2016, 8, 103.
In summary, we have developed a novel approach to site-
selective polypeptide modification via trapping of free radical-
mediated dechalcogenation. The reaction is operationally very
simple (carried out on the bench in an open vessel, with no
requirement to degas the solutions), and tolerant to a diverse
range of moieties appended to a persistent radical trap. Crucially,
we demonstrate that the stereochemistry of the a-center of the
modified Sec or Cys residue is retained during conjugation.
Reagent stoichiometry has been optimized throughout (protocols
A - E, see table S1) to demonstrate rapid labelling within 30 - 60
minutes for Sec residues and slightly longer for Cys (2 - 4 hrs).
The reaction is efficient down to a concentration of 100 µM (over
16 hrs, Fig 4A), and selective for Sec in the presence of Cys. The
aminooxy linker of the conjugate is stable under the conditions
explored and can be controllably degraded in mild acid with the
addition of Zn(0) with exceptionally clean release. The method
affords good - excellent yields on simple model systems and this
efficiency translates well onto larger and more complex peptides
and proteins carrying a wealth of chemical diversity. While
conjugation to an internal Cys residue within a recombinantly
expressed protein (ubiquitin) required a higher excess of the
reagents relative to the peptide models, this increase does not
translate into a significant quantity of material at the scale
appropriate for protein chemistry. In addition, the functionalised
TEMPO-based traps can be synthesised on the gram-scale in high
yield, and the TCEP and Mn(OAc)3 reagents are relatively
[6]
[7]
S. B. Gunnoo, A. Madder, ChemBioChem 2016, 17, 529-553.
J. M. Chalker, G. J. Bernardes, Y. A. Lin, B. G. Davis, Chem. Asian
J. 2009, 4, 630-640.
D. R. Goddard, L. Michaelis, J. Biol. Chem. 1935, 112, 361-371.
G. T. Hermanson, Bioconjugate techniques, Academic press,
2013.
M. E. Smith, F. F. Schumacher, C. P. Ryan, L. M. Tedaldi, D.
Papaioannou, G. Waksman, S. Caddick, J. R. Baker, J. Am.
Chem. Soc. 2010, 132, 1960-1965.
A. M. Spokoyny, Y. Zou, J. J. Ling, H. Yu, Y.-S. Lin, B. L.
Pentelute, J. Am. Chem. Soc. 2013, 135, 5946-5949.
M. A. Kasper, M. Glanz, A. Stengl, M. Penkert, S. Klenk, T. Sauer,
D. Schumacher, J. Helma, E. Krause, M. C. Cardoso, Angew.
Chem. Int. Ed. 2019, 58, 11625-11630.
[8]
[9]
[10]
[11]
[12]
[13]
[14]
A. Abbas, B. Xing, T. P. Loh, Angew. Chem. Int. Ed. 2014, 53,
7491-7494.
M. J. Matos, C. D. Navo, T. Hakala, X. Ferhati, A. Guerreiro, D.
Hartmann, B. Bernardim, K. L. Saar, I. Compañón, F. Corzana,
Angew. Chem. Int. Ed. 2019, 58, 6640-6644.
B. Bernardim, P. M. Cal, M. J. Matos, B. L. Oliveira, N. Martínez-
Sáez, I. S. Albuquerque, E. Perkins, F. Corzana, A. C. Burtoloso,
G. Jiménez-Osés, Nat. Commun. 2016, 7, 1-9.
C. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49,
1540-1573.
E. V. Vinogradova, C. Zhang, A. M. Spokoyny, B. L. Pentelute, S.
L. Buchwald, Nature 2015, 526, 687-691.
C. Zhang, E. V. Vinogradova, A. M. Spokoyny, S. L. Buchwald, B.
L. Pentelute, Angew. Chem. Int. Ed. 2019, 58, 4810-4839.
G. J. Bernardes, J. M. Chalker, J. C. Errey, B. G. Davis, J. Am.
Chem. Soc. 2008, 130, 5052-5053.
T. H. Wright, B. J. Bower, J. M. Chalker, G. J. Bernardes, R.
Wiewiora, W.-L. Ng, R. Raj, S. Faulkner, M. R. J. Vallée, A.
Phanumartwiwath, O. D. Coleman, M.-L. Thézénas, M. Khan, S. R.
G. Galan, L. Lercher, M. W. Schombs, S. Gerstberger, M. E. Palm-
Espling, A. J. Baldwin, B. M. Kessler, T. D. Claridge, S.
Mohammed, B. G. Davis, Science 2016, 354, aag1465.
A. Yang, S. Ha, J. Ahn, R. Kim, S. Kim, Y. Lee, J. Kim, D. Söll, H.-
Y. Lee, H.-S. Park, Science 2016, 354, 623-626.
J. Dadová, S. R. Galan, B. G. Davis, Curr. Opin. Chem. Biol. 2018,
46, 71-81.
H. J. Reich, R. J. Hondal, ACS Chem. Biol. 2016, 11, 821-841.
E. S. Arnér, H. Sarioglu, F. Lottspeich, A. Holmgren, A. Böck, J.
Mol. Biol. 1999, 292, 1003-1016.
J. Liu, Q. Chen, S. Rozovsky, J. Am. Chem. Soc. 2017, 139, 3430-
3437.
J. Liu, F. Zheng, R. Cheng, S. Li, S. Rozovsky, Q. Wang, L. Wang,
J. Am. Chem. Soc. 2018, 140, 8807-8816.
J. Liu, R. Cheng, S. Rozovsky, Curr. Opin. Chem. Biol. 2018, 46,
41-47.
L. R. Malins, N. J. Mitchell, R. J. Payne, J. Pept. Sci. 2014, 20, 64-
77.
D. T. Cohen, C. Zhang, B. L. Pentelute, S. L. Buchwald, J. Am.
Chem. Soc. 2015, 137, 9784-9787.
[15]
[16]
[17]
[18]
[19]
[20]
inexpensive. Beyond direct modification,
a DSL-conjugation
protocol has also been described to enable the application of this
methodology to the one-pot chemical synthesis and modification
of large peptides and small proteins. Furthermore, we have
exploited the lability of the aminooxy linker to low oxidation state
[21]
[22]
[23]
[24]
transition metals to develop
a one-pot ligation-conjugation-
reductive cleavage protocol that allows peptide ligation at Ser
residues.
Due to the tolerance, efficiency, and operational simplicity of
the described protocols, coupled with the stability of the aminooxy
linker and option of controllable degradation, this method
[25]
[26]
[27]
[28]
[29]
[30]
[31]
represents
a versatile new approach to polypeptide-small
molecule conjugation for researchers working across diverse
scientific themes.
L. Pedzisa, X. Li, C. Rader, W. R. Roush, Org. Biomol. Chem.
2016, 14, 5141-5147.
P. E. Dawson, T. W. Muir, I. Clark-Lewis, S. Kent, Science 1994,
266, 776-779.
[32]
[33]
S. B. Kent, Chem. Soc. Rev. 2009, 38, 338-351.
V. Agouridas, O. a. El Mahdi, V. Diemer, M. Cargoët, J.-C. M.
Monbaliu, O. Melnyk, Chem. Rev. 2019, 119, 7328-7443.
R. J. Hondal, B. L. Nilsson, R. T. Raines, J. Am. Chem. Soc. 2001,
123, 5140-5141.
M. D. Gieselman, L. Xie, W. A. van der Donk, Org. Lett. 2001, 3,
1331-1334.
R. Quaderer, A. Sewing, D. Hilvert, Helv. Chim. Acta 2001, 84,
1197-1206.
Acknowledgements
This work was supported by funding from the Engineering and
[34]
[35]
[36]
[37]
Physical
Sciences
Research
Council
(EP/S028323/1,
EP/S017739/1) and from the University of Nottingham (PhD
studentship for RG, EPR upgrade funded by the University of
Nottingham Propulsion Futures Beacon).
T. Durek, P. F. Alewood, Angew. Chem. Int. Ed. 2011, 50, 12042-
12045.
8
This article is protected by copyright. All rights reserved.