Paper
Organic & Biomolecular Chemistry
5 T. R. Kelly and M. H. Kim, J. Am. Chem. Soc., 1994, 116,
7072; H. E. Ungnade, E. M. Roberts and L. W. Kissinger, J.
Phys. Chem., 1964, 68, 3225; W. F. Baitinger, P. von
R. Schleyer, T. S. S. R. Murty and L. Robinson, Tetrahedron,
1964, 20, 1635; A. T. Dubis, Z. Lotowski, L. Siergiejczyk,
A. Z. Wilczewska and J. W. Morzycki, J. Chem. Res., 1998,
170; M. West-Nielsen, P. M. Dominiak, K. Wozniak and
P. E. Hansen, J. Mol. Struct., 2006, 789, 81; W. R. Zheng,
J. L. Xu, T. Huang, Q. Yang and Z. C. Chen, Res. Chem.
Intermed., 2011, 37, 31.
Conclusions
Because of the role that hydrogen bonds play in a variety of
chemical processes, it is important to accurately assess their
presence. Unfortunately, as hydrogen bonds get weaker, this
task becomes more difficult. Hydrogen/deuterium exchange
can provide an additional method to investigate hydrogen
bond strength. In these rigid molecules in organic solvents,
there is evidence for both neutral nitro groups and organic
fluorine serving as hydrogen bond acceptors.
6 J. L. Wardell, J. M. S. Skakle, J. N. Low and C. Glidewell,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2005, 61,
o634; A. Saeed and J. Simpson, Acta Crystallogr., Sect. E:
Struct. Rep. Online, 2009, 65, o1845; C. V. K. Sharma and
G. R. Desiraju, J. Chem. Soc., Perkin Trans. 2, 1994, 2345;
F. H. Allen, C. A. Baalham, J. P. M. Lommerse, P. R. Raithby
and E. Sparr, Acta Crystallogr., Sect. B: Struct. Sci., 1997, 53,
1017; T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson
and M. C. Etter, J. Am. Chem. Soc., 1987, 109, 7786.
7 J. D. Dunitz and R. Taylor, Chem. – Eur. J., 1997, 3, 89.
8 H.-J. Schneider, Chem. Sci., 2012, 3, 1381.
9 R. West, D. L. Powell, L. S. Whatley, M. K. T. Lee and P. von
R. Schleyer, J. Am. Chem. Soc., 1962, 84, 2221.
Experimental
All H/D exchange kinetics were performed in 1% CD3OD/
CDCl3 and at 22 °C. An initial NMR spectrum was acquired
with 990 μL of an analyte solution with a concentration of
5.0505 mM in CDCl3. Immediately prior to use, the deutero-
chloroform was passed through a small plug of neutral
alumina to remove any acidic impurities and then used
immediately. To this was added 10 μL of CD3OD marking time
= 0, and resulting in a final substrate concentration of 5 mM,
which was well below the concentrations where any evidence
of aggregation has been observed. The added methanol 10 J. Nadas, S. Vukovic and B. P. Hay, Comput. Theor. Chem.,
created a 1% methanol : chloroform solution, with the final 2012, 988, 75.
methanol concentration of 247 mM, which ensured pseudo- 11 P. Mocilac, K. Donnelly and J. F. Gallagher, Acta Crystal-
first-order kinetics. For a typical experiment, spectra were
acquired starting at 3 minutes, then every 1 minute until
10 minutes, every 5 minutes through 100 minutes, at 120, 150
and 200 minutes, and then every 50 minutes thereafter until
the disappearance of the proton signal into the baseline.
logr., Sect. B: Struct. Sci., 2012, 68, 189; K. Donnelly,
J. F. Gallagher and A. J. Lough, Acta Crystallogr., Sect. C:
Cryst. Struct. Commun., 2008, 64, o335; D. Chopra and
T. N. G. Row, CrystEngComm, 2008, 10, 54.
12 Y.-Y. Zhu, C. Li, G.-Y. Li, X.-K. Jiang and Z.-T. Li, J. Org.
Chem., 2008, 73, 1745; Y.-Y. Zhu, J. Wu, C. Li, J. Zhu,
J.-L. Hou, C.-Z. Li, X.-K. Jiang and Z.-T. Li, Cryst. Growth
Des., 2007, 7, 1490; C. Li, S.-F. Ren, J.-L. Hou, H.-P. Yi,
S.-Z. Zhu, X.-K. Jiang and Z.-T. Li, Angew. Chem., Int. Ed.,
2005, 44, 5725.
Acknowledgements
This material is based upon work supported by the National
Science Foundation under CHE-0852232. The authors also 13 For reviews of hydrogen–deuterium exchange see the fol-
wish to thank the American Chemical Society Petroleum
Research Fund for support.
lowing: C. S. Maier and M. L. Deinzer, Methods Enzymol.,
2005, 402, 312; M. M. G. Krishna, L. Hoang, Y. Lin and
S. W. Englander, Methods, 2004, 34, 51; C. K. Woodward,
Curr. Opin. Struct. Biol., 1994, 4, 112; S. W. Englander and
N. R. Kallenbach, Q. Rev. Biophys., 1984, 4, 521;
S. W. Englander, N. W. Downer and H. Teitelbaum, Annu.
Rev. Biochem., 1972, 41, 903.
Notes and references
1 A thorough review of weak hydrogen bonding can be found
in: G. R. Desiraju and T. Steiner, The weak hydrogen bond: 14 L. R. Steffel, T. J. Cashman, M. H. Reutershan and
in structural biology and chemistry, Oxford University Press,
1999.
2 For some early examples see: B. R. Linton, M. S. Goodman
and A. D. Hamilton, Chem. – Eur. J., 2000, 6, 2449;
A. M. Kelly-Rowley, V. M. Lynch and E. V. Anslyn, J. Am.
Chem. Soc., 1995, 117, 3438.
B. R. Linton, J. Am. Chem. Soc., 2007, 129, 12956;
T. J. Cashman and B. R. Linton, Org. Lett., 2007, 9, 5457;
H. Lingard, J. T. Han, A. L. Thompson, I. K. H. Leung,
R. T. W. Scott, S. Thompson and A. D. Hamilton, Angew.
Chem., Int. Ed., 2014, 53, 3650; D. W. Carney, K. R. Schmitz,
J. V. Truong, R. T. Sauer and J. K. Sello, J. Am. Chem. Soc.,
2014, 136, 1922; Z. Shi, Y. Song, F. Lu, T. Zhao, X. Zhao,
W. Zhang and Z. Li, Acta Chim. Sin., 2013, 71, 51;
P. Prabhakaran, V. Azzarito, T. Jacobs, M. J. Hardie,
C. A. Kilner, T. A. Edwards, S. L. Warriner and A. J. Wilson,
Tetrahedron, 2012, 68, 4485; Z. Ke, H.-F. Chow, M.-C. Chan,
3 J. Emsley, Chem. Soc. Rev., 1980, 9, 91.
4 H. D. Selby, B. K. Roland, M. D. Carducci and Z. Zheng,
Inorg. Chem., 2003, 42, 1656–1662; T. Birk, J. Bendix and
H. Weihe, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008,
68, m369.
2226 | Org. Biomol. Chem., 2016, 14, 2223–2227
This journal is © The Royal Society of Chemistry 2016