10.1002/anie.201811139
Angewandte Chemie International Edition
COMMUNICATION
E. E. Knaus, J. Med. Chem. 2009, 52, 1525-1529. (c) C. D. Sessler, M.
Rahm, S. Becker, J. M. Goldberg, F. Wang, S. L. Lippard, J. Am. Chem.
Soc. 2017, 139, 9325-9332.
2016, 55, 8718-8722. (g) C. A. Malapit, N. Ichiishi, M. S. Sanford, Org.
Lett. 2017, 19, 4142-4145. (h) R. Takise, R. Isshiki, K. Muto, K. Itami, J.
Yamaguchi, J. Am. Chem. Soc. 2017, 139, 3340-3343. (i) H. Ochiai, Y.
Uetake, T. Niwa, T. Hosoya, Angew. Chem. 2017, 129, 2522-2526.;
Angew. Chem. Int. Ed. 2017, 56, 2482-2486. (j) T. Okita, K. Kumazawa,
R. Takise, K. Muto, K. Itami, J. Yamaguchi, Chem. Lett. 2017, 46, 218-
220. (k) A. Dey, S. Sasmal, K. Seth, G. K. Lahiri, D. Maiti, ACS Catal.
2017, 7, 433-437. (l) X.-Q. Liu, J.-Q. Jia, M. Rueping, ACS Catal. 2017,
7, 4491-4496. (m) G.-R. Meng, M. Szostak, ACS Catal. 2017, 7, 7251-
7256. (n) A. Chatupheeraphat, H. Liao, S. Lee, M. Rueping, Org. Lett.
2017, 19, 4255-4258. (o) M. D. L. H. Macias, B. A. Arndtsen, J. Am.
Chem. Soc. 2018, 140, 10140-10144. (p) A. Chatupheeraphat, H. Liao,
W. Srimontree, L. Guo, Y. Minenkov, A. Poater, L. Cavallo, M. Rueping,
J. Am. Chem. Soc. 2018, 140, 3724-3735. (q) N. Ichiishi, C. A. Malapit,
L. Woźniak, M. S. Sanford, Org. Lett. 2018, 20, 44-47.
[4]
[5]
For recent reviews, see: (a) P. Xu, S. Guo, L.-Y. Wang, P.-P. Tang,
Synlett 2014, 26, 36-39. (b) B. Chen, D. A. Vicic, Top. Organomet.
Chem. 2015, 52, 113-142. (c) M. C. Belhomme, T. Besset, T. Poisson,
X. Pannecoucke, Chem. – Eur. J. 2015, 21, 12836-12865. (d) J. Rong,
C.-F. Ni, J.-B. Hu, Asian J. Org. Chem. 2017, 6, 139-152. (e) D. E.
Yerien, S. Barata-Vallejo, A. Postigo, A. Chem. – Eur. J. 2017, 23,
14676-14701.
For selected examples, see: (a) X.-L. Jiang, Z.-H. Chen, X.-H. Xu, F.-L.
Qing, Org. Chem. Front. 2014, 1, 774-776. (b) C. Matheis, K. Jouvin, L.
J. Goossen, Org. Lett. 2014, 16, 5984-5987. (c) J. R. Bour, S. K.
Kariofillis, M. S. Sanford, Organometallics 2017, 36, 1220-1223. (d) Z.
Feng, Q.-Q. Min, X.-G. Zhang, Org. Lett. 2016, 18, 44-47. (e) X.-Y.
Deng, J.-H. Lin, J.-C. Xiao, Org. Lett. 2016, 18, 4384-4387. (f) K.
Aikawa, H. Serizawa, K. Ishii, K. Mikami, Org. Lett. 2016, 18, 3690-
3693. (g) H. Serizawa, K. Ishii, K. Aikawa, K. Mikami, Org. Lett. 2016,
18, 3686-3689. (h) J. Sheng, H.-Q. Ni, K.-J. Bian, Y. Li, Y.-N. Wang, X.-
S. Wang, Org. Chem. Front. 2018, 5, 606-610.
[16] For selected examples about decarbonylative Heck reactions, see: (a)
H. Blaser, A. Spencer, J. Organomet. Chem. 1982, 233, 267-274. (b)
M. S. Stephan, A. J. J. M. Teunissen, G. K. M. Verzijl, J. G. de Vries,
Angew. Chem. 1998, 110, 688-690.; Angew. Chem. Int. Ed. 1998, 37,
662-664. (c) L. J. Goossen, J. Paetzold, Angew. Chem. 2002, 114,
1285-1289.; Angew. Chem. Int. Ed. 2002, 41, 1237-1241. (d) T.
Sugihara, T. Satoh, M. Miura, M. Nomura, Angew. Chem. 2003, 115,
4820-4822.; Angew. Chem. Int. Ed. 2003, 42, 4672-4674. (e) G.-R.
Meng, M. Szostak, Angew. Chem. 2015, 127, 14726-14730.; Angew.
Chem. Int. Ed. 2015, 54, 14518. (f) C.-W. Liu, G.-R. Meng, M. Szostak,
J. Org. Chem. 2016, 81, 12023-12030.
[6]
(a) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon,
M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 2012,
134, 1494-1497. (b) Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder,
D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R.
Collins, Y. Ishihara, P. S. Baran, Nature 2012, 492, 95-99. (c) S. Mizuta,
I. S. R. Stenhagen, M. O’Duill, J. Wolstenhulme, A. K. Kirjavainen, S. J.
Forsback, M. Tredwell, G. Sandford, P. R. Moore, M. Huiban, S. K.
Luthra, J. Passchier, O. Solin, V. Gouverneur, Org. Lett. 2013, 15,
2648-2651. (d) J.-B. Xia, C. Zhu, C. Chen, J. Am. Chem. Soc. 2013,
135, 17494-17500. (e) P. Xu, S. Guo, L. Wang, P.-P. Tang, Angew.
Chem. 2014, 126, 6065-6068.; Angew. Chem. Int. Ed. 2014, 53, 5955-
5958.
[17] For selected examples about decarbonylative Suzuki reactions, see: (a)
L. J. Goossen, J. Paetzold, Adv. Synth. Catal. 2004, 346, 1665-1668.
(b) K. Muto, J. Yamaguchi, D. G. Musaev, K. Itami, Nat. Commun.
2015, 6, 7508. (c) N. A. Weires, E. L. Baker, N. K. Garg, Nat. Chem.
2016, 8, 75-79. (d) S.-C. Shi, G.-R. Meng, M. Szostak, Angew. Chem.
2016, 128, 7073-7077.; Angew. Chem. Int. Ed. 2016, 55, 6959-6963.
(e) J. Masson-Makdissi, J. K. Vandavasi, S. G. Newman, Org. Lett.
2018, 20, 4094-4098.
[7]
[8]
(a) D. R. Dodds, R. A. Gross, Science 2007, 318, 1250-1251. (b) R. A.
Sheldon, Green Chem. 2014, 16, 950-963.
(a) P. S. Fier, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 5524-5527.
(b) G. K. S. Prakash, S. K. Ganesh, J.-P. Jones, A. Kulkarni, K. Masood,
J. K. Swabeck, G. A. Olah, Angew. Chem. 2012, 124, 12256-12260.;
Angew. Chem. Int. Ed. 2012, 51, 12090-12094.
[18] For selected examples about decarbonylative addition reactions, see:
(a) Y. Kajita, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2008, 130,
17226-17227. (b) Y. Ochi, T. Kurahashi, S. Matsubara, Org. Lett. 2011,
13, 1374-1377. (c) E. N. Jenkins, W. L. Czaplyski, E. J. Alexanian, Org.
Lett. 2017, 19, 2350-2353.
[9]
(a) Y. Gu, X.-B. Leng, Q.-L. Shen, Nat. Commun. 2014, 5, 5405. (b) Y.
Gu, D.-L. Chang, X.-B. Leng, Y.-C. Gu, Q.-L. Shen, Organometallics
2015, 34, 3065-3071. (c) D.-L. Chang, Y. Gu, Q.-L. Shen, Chem. – Eur.
J. 2015, 21, 6074-6078.
[19] S. T. Keaveney, F. Schoenebeck, Angew. Chem. 2018, 130, 4137-
4141.; Angew. Chem. Int. Ed. 2018, 57, 4073-4077.
[20] For selected examples about transition-metal-mediated decarbonylation
process at room temperature, see: (a) J. Tsuji, K. Ohno, Tetrahedron
Lett. 1965, 6, 3969-3971. (b) K. Ohno, J. Tsuji, J. Am. Chem. Soc. 1968,
90, 99-107. (c) G. R. Clark, W. R. Roper, L. J. Wright, V. P. D. Yap,
Organometallics 1997, 16, 5135-5136. (d) R. Ciganda, M. A. Garralda,
L. Ibarlucea, C. Mendicute-Fierro, M. C. Torralba, M. R. Tprres, Inorg.
Chem. 2012, 51, 1760-1768.
[10] L. Xu, D. A. Vicic, J. Am. Chem. Soc. 2016, 138, 2536-2539.
[11] V. Bacauanu, S. Cardinal, M. Yamauchi, M. Kondo, D. F. Fernández, R.
Remy, D. W. C. MacMillan. Angew. Chem. 2018, 130, 12723-12728.;
Angew. Chem. Int. Ed. 2018, 57, 12543-12548.
[12] Z. Feng, Q.-Q. Min, X.-P. Fu, L. An, X.-G. Zhang, Nat. Chem. 2017, 9,
918-923.
[13] W.-J. Miao, Y.-C. Zhao, C.-F. Ni, B. Gao, W. Zhang, J.-B. Hu, J. Am.
Chem. Soc. 2018, 140, 880-883.
[21] K. Aikawa, Y. Nakamura, Y. Yokota, W. Toya, K. Mikami, Chem. – Eur.
J. 2015, 21, 96-100.
[14] For selected reviews, see: (a) L. J. Goossen, N. Rodríguez, K.
Goossen, Angew. Chem. 2008, 120, 3144-3164.; Angew. Chem. Int. Ed.
2008, 47, 3100-3120. (b) W. I. Dzik, P. P. Lange, L. J. Goossen, Chem.
Sci. 2012, 3, 2671-2678. (c) R. Takise, K. Muto, J. Yamaguchi, Chem.
Soc. Rev. 2017, 46, 5864-5888. (d) T. Patra, D. Maiti, Chem. – Eur. J.
2017, 23, 7382-7401. (e) L. Guo, M. Rueping, Chem. – Eur. J. 2018, 24,
7794-7809. (f) L. Guo, M. Rueping, Acc. Chem. Res. 2018, 51, 1185-
1195.
[22] A. J. Borah, G.-B. Yan, Org. Biomol. Chem. 2015, 13, 8094-8115.
[23] Y. Obora, Y. Tsuji, T. Kawamura, J. Am. Chem. Soc. 1993, 115, 10414-
10415.
[24] (a) J. S. Quesnel, B. A. Arndtsen, J. Am. Chem. Soc. 2013, 135,
16841-16844. (b) J. S. Quesnel, L. V. Kayser, A. Fabrikant, B. A.
Arndtsen, Chem. – Eur. J. 2015, 21, 9550-9555.
[25] (a) R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461-1473.
(b) T. Iwai, T. Fujihara, J. Terao, Y. Tsuji, J. Am. Chem. Soc. 2009, 131,
6668-6669.
[15] For selected examples, see: (a) B. M. Trost, F. Chen, Tetrahedron Lett.
1971, 12, 2603-2607. (b) E. M. O´Brien, E. A. Bercot, T. Rovis, J. Am.
Chem. Soc. 2003, 125, 10498-10499. (c) X. Zhao, Z.-K. Yu, J. Am.
Chem. Soc. 2008, 130, 8136-8137. (d) A. Correa, J. Cornella, R.
Martin, Angew. Chem. 2013, 125, 1928-1930.; Angew. Chem. Int. Ed.
2013, 52, 1878-1880. (e) A. Maleckis, M. S. Sanford, Organometallics
2014, 33, 2653-2660. (f) J.-F. Hu, Y. Zhao, J.-J. Liu, Y.-M. Zhang, Z.-Z.
Shi, Angew. Chem. 2016, 128, 8860-8864.; Angew. Chem. Int. Ed.
[26] K. Taksumi, R. Hoffmann, A. Yamamoto, J. K. Stille, Bull. Chem. Soc.
Jpn. 1981, 54, 1857-1867.
[27] For selected reviews, see: (a) J. K. Stille, Angew. Chem. 1986, 98, 504-
519.; Angew. Chem. Int. Ed. 1986, 25, 508-524. (b) M. Blangetti, H.
Rosso, C. Prandi, A. Deagostino, P. Venturello, Molecules 2013, 18,
1188-1213. For selected examples, see: (c) D. Milstein, J. K. Stille, J.
Am. Chem. Soc. 1978, 100, 3636-3638. (d) D. Milstein, J. K. Stille, J.
This article is protected by copyright. All rights reserved.