Journal of the American Chemical Society
Communication
Figure 2. Chemical structures of 1b and 1c.
To convert the stereochemistry of HIV, a Mitsunobu reaction
REFERENCES
■
of Me Val-OH (6) and alcohol 8 was carried out and Me Val-D-
2
2
(1) Davies, J. S. J. Pept. Sci. 2003, 9, 471−501.
2) (a) Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H. Acc. Chem.
HIV-OH (9b) was obtained after removal of the allyl group with
Pd(PPh ) ] and morpholine. Following the sequence depicted
(
[
Res. 2008, 41, 1331−42. (b) Chatterjee, J.; Laufer, B.; Kessler, H. Nat.
3
4
in Schemes 3 and 4, we then performed the synthesis of 1c, using
b and Fmoc-D-N-Me-Ala-OH instead of 9a and Fmoc-N-Me-
Ala-OH, respectively. The resulted synthetic compound and the
Protoc. 2012, 7, 432−44.
9
(3) Sivanathan, S.; Scherkenbeck, J. Molecules 2014, 19, 12368−12420.
(
4) For recent examples, see: (a) Pelay-Gimeno, M.; García-Ramos, Y.;
Martin, M. J.; Spengler, J.; Molina-Guijarro, J. M.; Munt, S.; Francesch,
A. M.; Cuevas, C.; Tulla-Puche, J.; Albericio, F. Nat. Commun. 2013, 4,
352. (b) Murai, M.; Kaji, T.; Kuranaga, T.; Hamamoto, H.; Sekimizu,
K.; Inoue, M. Angew. Chem., Int. Ed. 2015, 54, 1556−60. (c) Martín, M.
J.; Rodríguez-Acebes, R.; García-Ramos, Y.; Martínez, V.; Murcia, C.;
́ ́
Digon, I.; Marco, I.; Pelay-Gimeno, M.; Fernandez, R.; Reyes, F.;
Francesch, A. M.; Munt, S.; Tulla-Puche, J.; Albericio, F.; Cuevas, C. J.
Am. Chem. Soc. 2014, 136, 6754−62.
(
2
of coibamide A should be revised from 1a to 1c. Furthermore, a
bioactivity assay was performed using the MTT method. As
expected, 1c displayed similar in vitro activity against MDA-MB-
31 cells (IC50 3.9 nM), corroborating the authenticity of our
structural revisions.
2
In summary, the total synthesis and stereochemical revision of
coibamide A were achieved for the first time by using an efficient
and robust solid-phase method we have developed. The
combined application of both the Boc- and Fmoc-based strategy
on aryl hydrazide resin allows for successive assembly of the main
and side peptidyl chains by solid-phase peptide synthesis. The
use of BTC to generate all of the amide bonds on solid support is
also featured. Establishment of the revised structure of coibamide
A paves the way for structure−activity relationship studies and
elucidation of the unknown mechanism of action, which are
currently underway in our laboratory.
(5) Medina, R. A.; Goeger, D. E.; Hills, P.; Mooberry, S. L.; Huang, N.;
Romero, L. I.; Ortega-Barría, E.; Gerwick, W. H.; McPhail, K. L. J. Am.
Chem. Soc. 2008, 130, 6324−5.
(
̈
6) Hau, A. M.; Greenwood, J. A.; Lohr, C. V.; Serrill, J. D.; Proteau, P.
J.; Ganley, I. G.; McPhail, K. L.; Ishmael, J. E. PLoS One 2013, 8, e65250.
(
(
7) Stolze, S. C.; Kaiser, M. Synthesis 2012, 44, 1755−77.
8) He, W.; Qiu, H. B.; Chen, Y. J.; Xi, J.; Yao, Z. J. Tetrahedron Lett.
2
(
014, 55, 6109−12.
9) Nabika, R.; Suyama, T. L.; Hau, A. M.; Misu, R.; Ohno, H.; Ishmael,
J. E.; McPhail, K. L.; Oishi, S.; Fujii, N. Bioorg. Med. Chem. Lett. 2015, 25,
302−6.
(10) Woo, Y.; Mitchell, A. R.; Camarero, J. A. Int. J. Pept. Res. Ther.
2
(
007, 13, 181−90.
11) (a) Rosenbaum, C.; Waldmann, H. Tetrahedron Lett. 2001, 42,
ASSOCIATED CONTENT
■
5
677−80. (b) Shigenaga, A.; Moss, J. A.; Ashley, F. T.; Kaufmann, G. F.;
*
S
Supporting Information
Janda, K. D. Synlett 2006, 4, 551−4.
(12) (a) Falb, E.; Yechezkel, T.; Salitra, Y.; Gilon, C. J. Pept. Res. 1999,
53, 507−17. (b) Eckert, H.; Forster, B. Angew. Chem., Int. Ed. Engl. 1987,
2
2
(
6, 894−5. (c) Fuse, S.; Mifune, Y.; Takahashi, T. Angew. Chem., Int. Ed.
014, 53, 851−5.
13) (a) Thern, B.; Rudolph, J.; Jung, G. Angew. Chem., Int. Ed. 2002,
Experimental procedures and analysis data (PDF)
4
4
(
1, 2307−9. (b) Thern, B.; Rudolph, J.; Jung, G. Tetrahedron Lett. 2002,
3, 5013−6.
14) Fang, L.; Wu, C.; Yu, Z.; Shang, P.; Cheng, Y.; Peng, Y.; Su, W.
AUTHOR INFORMATION
Eur. J. Org. Chem. 2014, 2014, 7572−6.
(15) Fang, L.; Yao, G.; Pan, Z.; Wu, C.; Wang, H. S.; Burley, G. A.; Su,
W. Org. Lett. 2015, 17, 158−61.
Author Contributions
G.Y. and Z.P. contributed equally.
§
(16) Freidinger, R. M.; Hinkle, J. S.; Perlow, D. S.; Arison, B. H. J. Org.
Chem. 1983, 48, 77−81.
Notes
(17) King, A. M.; De Ryck, M.; Kaminski, R.; Valade, A.; Stables, J. P.;
Kohn, H. J. Med. Chem. 2011, 54, 6432−42.
The authors declare no competing financial interest.
(
18) (a) Urban, J.; Vaisar, T.; Shen, R.; Lee, M. S. Int. J. Pept. Protein Res.
1
996, 47, 182−189. (b) Vaisar, T.; Urban, J. J. Mass Spectrom. 1998, 33,
ACKNOWLEDGMENTS
■
5
05−24.
This work was supported by the “Hundred Talents Program” of
Chinese Academy of Sciences, Shenzhen Sciences & Technology
Innovation Council (KQCX20130628112914285,
KQCX2015033117354154, and JCYJ20150316143416083)
and the National Natural Science Foundation of China (Grant
Nos. 21402232 and 21432003). The authors are grateful for the
assistance of Mass facility from Peking University Shenzhen
Graduate School.
(19) Fallows, A. J.; Singh, I.; Dondi, R.; Cullis, P. M.; Burley, G. A. Org.
Lett. 2014, 16, 4654−7.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX