BULLETIN OF THE
Article
Copper-catalyzed Oxidative Olefination of Thiols
KOREAN CHEMICAL SOCIETY
12002, 2563;(e)L. F. vanStaden, D. Gravestock, J. Ager, Chem.
Soc. Rev. 2002, 31, 195.
S
O
S
O
Ph
Ph
COPh
O
2. For one-pot oxidation–olefination of alcohols using chemical
oxidants, see: (a) S. Shuto, S. Niizuma, A. Matsuda, J. Org.
Chem. 1998, 63, 4489; (b) R. J. K. Taylor, M. Reid, J. Foot,
S. A. Raw, Acc. Chem. Res. 2005, 38, 851; (c) A. Maiti,
J. S. Yadav, Synth. Commun. 2001, 31, 1499; (d)
R. N. MacCoss, E. P. Balskus, S. V. Ley, Tetrahedron Lett.
2003, 44, 7779; (e) A. R. Bressette, L. C. Glover, Synlett
2004, 738.
O
COPh
CO2Et
S
O
O
Ph
Ph
S-
A
S
O
+
+
Ph
Ph
Copper complex
O2 TBD
TBDH+
S
,
1c
SH
O
1a
Ph3P
S
Ph
OEt
Ph3P
7c
B
S
S
S
H
H
PPh3
Ph
3. For one-pot oxidation–olefination of alcohols using
oxygen, see: (a) G. Kim, D. G. Lee, S. Chang, Bull. Korean
Chem. Soc. 2001, 22, 943; (b) M. Davi, H. Lebel, Org.
Lett. 2009, 11, 41; (c) E. Y. Lee, Y. Kim, J. S. Lee, J. Park,
Eur. J. Org. Chem. 2009, 2943; (d) A. I. Carrillo,
L. C. Schmidt, M. L. Marin, J. C. Scaiano, Catal. Sci. Technol.
2014, 4, 435.
4. For one-pot dehydrogenation-olefination of alcohols, see:
D. Srimani, G. Leitus, Y. Ben-David, D. Milstein, Angew. Chem.
Int. Ed. 2014, 53, 11092.
5. (a) X. Wang, M. Ji, S. Lim, H.-Y. Jang, J. Org. Chem. 2014, 79,
7256;(b)S. Lim, M. Ji, X. Wang, C. Lee, H.-Y. Jang, Eur. J. Org.
Chem. 2015, 591.
6. (a) Y. Ogata, Y. Nakagawa, Bull. Chem. Soc. Jpn. 1980, 53,
1193; (b) S. Tanimoto, S. Nazawa, Y. Inoue, Bull. Inst. Chem.
Res. Kyoto Univ. 1990, 68, 193.
CO2Et
TBD
Scheme 2. Plausible reaction mechanism for the formation of 1c
and 7c.
thiobenzaldehydes can form via the deprotonation of
dibenzyldisulfide, which is formed from 1a.10 Oxidation
can be accelerated by a copper catalyst and oxygen. Thioben-
zaldehydes react with either sulfones or phosphorous
ylides to afford corresponding olefin 1c and 7c, respectively.
The byproducts of each reaction account for the reaction
mechanism that includes the intermediates described in
Scheme 2.
Conclusion
7. (a) P. Page, Organosulfur Chemistry: Synthetic Aspect, Aca-
demic Press Inc., San Diego, CA, 1995, p. 225; (b) K. Okuma,
Y. Tachibana, J.-I. Sakata, T. Komiya, I. Kaneko, Y. Komiya,
Y. Yamasaki, S.-I. Yamamoto, H. Ohta, Bull. Chem. Soc. Jpn.
1998, 61, 4323; (c) K. Okuma, K. Ikari, H. Ohta, Chem. Lett.
1992, 131.
8. Phenylthiosulfonate has been used for protein modification,
see: (a) D. P. Gamblin, P. Garnier, S. J. Ward, N. J. Oldham,
A. J. Fairbanks, B. G. Davis, Org. Biomol. Chem. 2003, 1,
3642; (b) J. M. Chalker, Y. A. Lin, O. Boutureira,
B. G. Davis, Chem. Commun. 2009, 3714.
9. Triphenylphosphine sulphide has been used as a ligand in
metal complexes, see: (a) Q.-S. Li, C.-Q. Wan, R.-Y. Zou,
F.-B. Xu, H.-B. Song, X.-J. Wan, Z.-Z. Zhang, Inorg. Chem.
2006, 45, 1888; (b) H. Heuclin, X. F. Le Goff, N. Mézailles,
Chem. Eur. J. 2012, 18, 16136.
10. For selected articles regarding disulfide formation, see: (a)
A. Shaabani, D. G. Lee, Tetrahedron Lett. 2001, 42, 5833; (b)
M. H. Ali, M. McDermott, Tetrahedron Lett. 2002, 43, 6271;
(c) A. R. Hajipour, S. E. Mallakpour, H. Adibi, J. Org. Chem.
2002, 67, 8666; (d) A. Khazaei, M. A. Zolfigol, A. Rostami,
Synthesis 2004, 2959; (e) C. C. Silveira, S. R. Mendes, Tetrahe-
dron Lett. 2007, 48, 7469; (f ) J. L. G. Ruano, A. Parra,
J. Alemán, Green Chem. 2008, 10, 706; (g) D. Singh,
F. Z. Galetto, L. C. Soares, O. E. D. Rodrigues, A. L. Braga,
Eur. J. Org. Chem. 2010, 67, 2661; (h) A. Dhakshinamoorthy,
M. Alvaro, H. Garcia, Chem. Commun. 2010, 46, 6476;
(i) M. S. Abaee, M. M. Mojtahedi, S. Navidipoor, Synth. Com-
mun. 2011, 41, 170.
We reported the first example of copper-catalyzed one-pot
aerobic oxidation of thiols followed by olefinations with
sulfones and phosphorous ylides. The thiols underwent
direct oxidation to afford thioaldehydes, which underwent
Julia-type and Wittig-type olefination with sulfones and
phosphorous ylides, respectively. Low-cost copper catalysts
enhanced the oxidation of thiols, and the use of appropriate
amounts of organic bases appears to be critical for
obtaining a high yield of olefin products. Isolation of the
byproducts of each reaction supported the proposed reaction
mechanism.
Acknowledgments. This study was supported by the Korea
Research Foundation (Nos 2009-0094046 and 2013008819)
and a Korea CCS R&D Center (KCRC) grant from the Korea
Government (Ministry of Education, Science and Technol-
ogy; No. 2014M1A8A1049294).
Supporting Information. Experimental procedures and
spectra of 1c–13c.
References
1. (a) T. Takeda, Modern Carbonyl Olefination, Wiley-VCH,
Weinheim, 2004; (b) B. E. Maryanoff, A. B. Reitz, Chem.
Rev. 1989, 89, 863; (c) J. Boutagy, R. Thomas, Chem. Rev.
1974, 74, 87; (d) P. R. Blakemore, J. Chem. Soc. Perkin Trans.
Bull. Korean Chem. Soc. 2015, Vol. 36, 1824–1827
© 2015 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim