Journal of the American Chemical Society
Page 4 of 5
Me
P(O)Ph
H
2
0.5 mol % Cu(OAc)2
0.75 mol % Ph-BPE
centers with excellent enantiocontrol. Utilizing a diverse
range of other (poly)unsaturated hydrocarbons as latent nu-
N
Ph
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
+
(eq 1)
(
MeO)2MeSiH, t-BuOH
THF, RT, 24 h
Ph
NHP(O)Ph
2
Cl
cleophiles in the asymmetric addition to imines is currently
underway and will be reported in due course.
•
one gram scale
Cl
7
2a
5e
8
3% yield, 2.5:1 d.r.
99% ee (99% ee)
Me
Ph
ASSOCIATED CONTENT
5
mol % Cu(OAc)2
6 mol % Ph-BPE
(eq 2)
Ph
(MeO) MeSiH, t-BuOH
MTBE, RT, 24 h
2
Supporting Information. Experimental procedures and charac-
terization data. This materials is available free of charge via the
Internet at http://pubs.acs.org.
HN
t-Bu
1
+
Ph
S
9
O
S
O
8
4% yield
d.r. = 18:1:0.2:0.7
N
t-Bu
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
H
AUTHOR INFORMATION
8
[X-ray]
Corresponding Author
Figure 2. Gram-Scale Synthesis with Low Catalyst Loadings
and the Use of Chiral Sulfinimines
*
To gain further insight into the unique chemoselectivity
during the hydrocupration event, we studied the rates of the
CuH-catalyzed reduction of imine 2a with different support-
ing ligands by monitoring the reaction progress using calori-
metric analysis established by Blackmond (Figure 3(A)).21
Our kinetic data suggested that the undesired imine reduc-
tion with Ph-BPE is considerably slower than that using
DTBM-SEGPHOS and SEGPHOS. Furthermore, we per-
formed density-functional theory (DFT) calculations for the
styrene hydrocupration with the same set of CuH catalysts
ACKNOWLEDGMENT
Financial support was provided by the National Institutes of
Health (GM46059) and the MIT Undergraduate Research Op-
portunity Program (I.B.P). We acknowledge Dr. Gang Lu and
Prof. Peng Liu (University of Pittsburgh) for helpful discussion
on the computational study. We thank Dr. Yiming Wang (MIT)
for his advice on this manuscript and Dr. Peter Müller (MIT)
for X-ray crystallographic analysis. Calculations were performed
at the Extreme Science and Engineering Discovery Environ-
ment (XSEDE) supported by the NSF.
2
2
(Figure 3(B)). Our computational investigations revealed
that while the activation barrier for styrene hydrocupration
using Ph-BPE is comparable to that for DTBM-SEGPHOS,
REFERENCES
(
1) Chiral Amine Synthesis; Nugent, T.C. Ed.; Wiley-VCH: Weiheim,
2
this Ph-BPE-based hydrocupration is ca. 1.8 ×10 times faster
2010.
(
2) For recent reviews: (a) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev.
than that using SEGPHOS. Taken together, these findings
provide evidence for the unusual ability of the Ph-BPE-based
CuH catalyst to suppress the undesired imine reduction
while simultaneously facilitating the hydrocupration of weak-
ly polarized styrene substrates.
2011, 111, 1713. (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(3) Hydrolases in Organic Synthesis; Bornscheuer, U. T.; Kazlauskas, R.
J. Ed.; Wiley-VCH: Weinheim, 2006.
(4) For a review on the use of tert-butylsulfinamides: (a) Robak, M. T.;
Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600. For reviews on
catalytic asymmetric addition reactions to imines: (b) Kobayashi, S.; Mori,
Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. (c) Kobayashi,
S.; Ishitani, Chem. Rev. 1999, 99, 1069.
(5) Selected reviews: (a) H.-Y. Jang, M. J. Krische, Acc. Chem. Res.
2004, 37, 653. (b) E. Skucas, M.-Y. Ngai, V. Komanduri, M. J. Krische,
Acc. Chem. Res. 2007, 40, 1394.
(6) Selected recent examples: (a) Liang, T.; Zhang, W.; Krische, M. J. J.
Am. Chem. Soc. 2015, 137, 16024. (b) Zbieg, J. R.; Yamaguchi, E.; McIn-
turff, E. L.; Krische, M. J. Science 2012, 336, 324.
(A)
0.07!
DTBM-SEGPHOS!
SEGPHOS!
Ph-BPE!
0
.06!
0
0
.05!
.04!
2
mol % Cu(OAc)2
P(O)Ph2
NHP(O)Ph2
H
N
3 mol % L*
(MeO)2MeSiH, t-BuOH
THF, 25.0 °C
Ph
H
Ph
H
0.03!
2
a
4
0
0
.02!
.01!
(
7) (a) Kong, J.-R.; Cho, C.-W.; Krische, M. J. J. Am. Chem.
Soc. 2005, 127, 11269. (b) Skucas, E.; Kong, J.-R.; Krische, M. J. J. Am.
Chem. Soc. 2007, 129, 7242. For a Ni-catalyzed asymmetric reductive
coupling of alkynes and imines: (c) Zhou, C.-Y.; Zhu, S.-F.; Wang, L.-X.;
Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 10955. For non-
enantioselective examples: (d) Chen, T.-Y.; Tsutsumi, R.; Montgomery, T.
P.; Volchkov, I. Krische, M. J. J. Am. Chem. Soc. 2015, 137, 1798. (e) Oda,
S.; Franke, J.; Krische, M. J. Chem. Sci. 2016, 7, 136.
(8) For a non-enantioselective example of reductive coupling between
electron-deficient vinylazaarenes and imines: Komanduri, V.; Grant, C. D.;
Krische, M. J. J. Am. Chem. Soc. 2008, 130, 12592.
0
!
0
!
10!
20!
30!
40!
50!
60!
70!
80!
90!
100!
time (min)!
(B)
L*
ΔG‡
Ph
‡
P
DTBM-SEGPHOS (L1) 15.3
P
CuL*
Cu
H
SEGPHOS (L2)
Ph-BPE (L6)
18.1
15.1
+
H
H
Ph
Me
Ph
H
L*Cu
H
ΔG‡ is shown in kcal/mol.
Figure 3. Mechanistic Insight into the Unusual Chemoselec-
tivity of Hydrocupration
(9) For reviews on CuH catalysis: (a) Deutsch, C.; Krause, N.; Lipshutz,
B. H. Chem. Rev. 2008, 108, 2916. (b) Rendler, S.; Oestreich, M. Angew.
Chem. Int. Ed. 2007, 46, 498.
In summary, we have developed a mild and general copper-
catalyzed process for the enantioselective addition of sty-
rene-derived nucleophiles to imines. This process tolerates a
broad range of functionalized and heterocyclic substrates,
providing rapid access to amines bearing vicinal stereogenic
(10) For a review: Wang, Y.-M.; Pirnot, M. T. Angew. Chem. Int. Ed.
2
015, 55, 48.
11) (a) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int.
Ed. 2013, 52, 10830. (b) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org.
(
4
ACS Paragon Plus Environment