www.eurjic.org
FULL PAPER
distilled thf (10 mL) were mixed at room temperature for 18 h to
give the corresponding enyne 8. It was obtained as a light-yellow
liquid after purification by flash column chromatography on silica
[2] a) P. T. Anastas, J. B. Zimmerman, Environ. Sci. Technol. 2003,
37, 94A–101A; b) P. T. Anastas, M. M. Kirchhoff, Acc. Chem.
Res. 2002, 35, 686–694; c) P. Anastas, J. Warner, in: Green
Chemistry: Theory and Practice, Oxford University Press, New
York, 1998.
gel by using pentane/ethyl acetate (5:1) as the eluent (0.85 g, 92%
1
yield). H NMR (CDCl
3
, 300 MHz): δ = 7.35–7.38 (d, J = 8.0 Hz,
[
3] See for example: a) W. Leitner, Acc. Chem. Res. 2002, 35, 746–
2
H), 6.81–6.85 (d, J = 8.0 Hz, 2 H), 5.94–6.06 (m, 1 H), 5.35 (d,
7
56; b) S. Liu, J. Xiao, J. Mol. Catal. A 2007, 270, 1–43; c) M.
J = 17.0 Hz, 1 H), 5.14 (d, J = 10.0 Hz, 1 H), 4.19 (d, J = 5.0 Hz,
Gómez, E. Teuma, J. Durand, C. R. Chim. 2007, 10, 152–177;
d) R. K. Henderson, C. Jiménez-González, D. J. C. Constable,
S. R. Alston, G. G. A. Inglis, G. Fisher, J. Sherwood, S. P.
Binks, A. D. Curzons, Green Chem. 2011, 13, 854–862; e) M. J.
Raymond, C. S. Slater, M. J. Savelski, Green Chem. 2010, 12,
3
2
7
7
H), 3.79 (s, 3 H), 1.58 (s, 6 H) ppm. 1 C NMR (CDCl
3
,
6.4 MHz): δ = 159.6, 135.9, 133.1, 116.3, 114.8, 113.6, 89.9, 84.2,
1.1, 65.6, 55.4, 29.2 ppm. MS (EI): m/z = 230.10.
General Procedure for Rh-catalysed PKR: 0.0125 mmol [Rh(μ-
1826–1834.
–
2
X)(COD)] (X = OMe: 6.05 mg; X = Cl , 6.05 mg) and, if appropri-
[4] For pioneering work, see: a) I. U. Khand, G. R. Knox, P. L.
ated, the corresponding ligand (0.025 mmol; TPPTS: 14.2 mg; rac-
BINAP: 15.6 mg) were dissolved in glycerol (5 mL) in a Fisher–
Porter bottle. The corresponding 1,6-enyne was then added
Pauson, W. E. Watts, J. Chem. Soc., Chem. Commun. 1971, 36–
36. For preliminary mechanistical discussion, see: b) P.
Magnus, L. M. Principe, Tetrahedron Lett. 1985, 26, 4851–
4854. For a first example of intramolecular reaction, see: c)
N. E. Schore, M. C. Croudace, J. Org. Chem. 1981, 46, 5436–
5438. For reviews, see: d) P. L. Pauson, Tetrahedron 1985, 41,
(0.5 mmol; 1: 162.5 mg; 2: 86.11 mg), and the argon atmosphere
was replaced by CO (0.5 bar). The mixture was then stirred at 80 °C
for the desired time. After completion, CO was released in the
hood, and extractions with dichloromethane were carried out (3ϫ
5855–5860; e) N. E. Schore, Org. React. 1991, 40, 1–90; f) S. E.
Gibson, N. Mainolfi, Angew. Chem. 2005, 117, 3082; Angew.
Chem. Int. Ed. 2005, 44, 3022–3037; g) H.-W. Lee, F.-Y. Kwong,
Eur. J. Org. Chem. 2010, 789–811; h) The Pauson–Khand Reac-
tion. Scope, Variations and Applications (Ed.: R. R. Torres),
Wiley-VCH, Weinheim, Germany, 2012.
1
0 mL). The organic phases were then concentrated under vacuum
1
and analysed by H NMR spectroscopy. The corresponding car-
bocyclisation product was isolated by following the reported pro-
cedure.
[
23]
[
5] For selected reviews, see: a) A. Corma, S. Iborra, A. Velty,
Chem. Rev. 2007, 107, 2411–2502; b) Y. Zheng, X. Chen, Y.
Shen, Chem. Rev. 2008, 108, 5253–5277; c) Y. Gu, F. Jérôme,
Green Chem. 2010, 12, 1127–1138; d) A. E. Diaz-Alvarez, J.
Francos, B. Lastra-Barreira, P. Crochet, V. Cadierno, Chem.
Commun. 2011, 47, 6208–6227.
2
-(4-Nitrophenyl)-7-oxabicyclo[3.3.0]oct-1-en-3-one (7a): The prod-
uct was obtained by a Rh-catalysed carbocyclisation from the en-
yne 7 by following the procedure described in the main text. The
bicyclo[3.3.0]octenone 7a was obtained as a colourless oil after pu-
rification by column chromatography on silica gel by using pent-
ane/ethyl acetate (2:1) as the eluent. H NMR (CDCl
1
3
, 300 MHz):
[
6] a) T. Kobayashi, Y. Koga, K. Narasaka, J. Organomet. Chem.
δ = 8.28- 7.74 (d, J = 16 Hz, 2 H), 7.74–7.71 (d, J = 8.0 Hz, 2 H),
2
001, 624, 73–87; b) E. Kim, I. S. Kim, V. Ratovelomanana-
5
3
3
1
.04 (d, J = 16 Hz, 1 H), 4.67 (d, J = 8.0 Hz, 1 H), 4.34 (t, 1 H),
Vidal, J.-P. Genêt, N. Jeong, J. Org. Chem. 2008, 73, 7985–
.34 (m, 1 H), 3.2 (t, 1 H), 2.93 (dd, J = 6.0 Hz, 1 H), 2.4 (dd, J =
7989.
13
.0 Hz, 1 H) ppm. C NMR (CDCl
3
, 76.4 MHz): δ = 195.2, 149.2, [7] J. H. Park, Y. Cho, Y. K. Chung, Angew. Chem. 2010, 122,
47.1, 138.7, 129.9, 127.3, 121.1, 75.6, 76.6, 38.7, 36.2 ppm. MS
5264; Angew. Chem. Int. Ed. 2010, 49, 5138–5141.
(
EI): m/z = 245.13.
-(4-Methoxyphenyl)-8,8-dimethyl-7-oxabicyclo[3.3.0]oct-1-en-3-one
8a): The product was obtained by a Rh-catalysed carbocyclisation
[8] K. Ikeda, T. Morimoto, K. Kakiuchi, J. Org. Chem. 2010, 75,
6279–6282.
2
(
[
9] a) T. Morimoto, K. Fuji, K. Tsutsumi, K. Kakiuchi, J. Am.
Chem. Soc. 2002, 124, 3806–3807; b) K. Fuji, T. Morimoto, K.
Tsutsumi, K. Kakiuchi, Angew. Chem. 2003, 115, 2511; Angew.
Chem. Int. Ed. 2003, 42, 2409–2411.
from the enyne 8 by following the procedure described in the main
text. The bicyclo[3.3.0]octenone 8a was obtained as a yellow liquid
after purification by column chromatography on silica gel by using
[
10] a) T. Shibata, N. Toshida, K. Tagagi, Org. Lett. 2002, 4, 1619–
1621; b) T. Shibata, N. Toshida, K. Tagagi, J. Org. Chem. 2002,
67, 7446–7450; c) F. Y. Kwong, Y. M. Li, W. H. Lam, L. Qiu,
H. W. Lee, C. H. Yeung, K. S. Chan, A. S. C. Chan, Chem. Eur.
J. 2005, 11, 3872–3880; d) F. Y. Kwong, H. W. Lee, L. Qiu,
W. H. Lam, Y. M. Li, H. L. Kwong, A. S. C. Chan, Adv. Synth.
Catal. 2005, 347, 1750–1754.
1
pentane/ethyl acetate (2:1) as the eluent. H NMR (CDCl
3
,
3
8
1
1
00 MHz): δ = 7.23–7.26 (d, J = 8.0 Hz, 2 H), 6.92–6.95 (d, J =
.0 Hz, 2 H), 4.34 (t, J = 8.0 Hz, 1 H), 3.83 (s, 1 H), 3.47–3.53 (m,
H), 3.38 (dd, J = 8.0, 11.0 Hz, 1 H), 2.80 (dd, J = 6.5, 17.5 Hz,
H), 2.31 (dd, J = 3.5, 18.0 Hz, 1 H), 1.65 (s, 3 H), 1.16 (s, 3 H)
13
ppm. C NMR (CDCl
30.4, 123.1, 114.1, 78.9, 70.2, 55.5, 43.9, 39.2, 29.1, 24.1 ppm. MS
EI) m/z = 258.18.
3
, 125 MHz): δ = 208.2, 183.2, 160.1, 135.3,
[11] D. E. Kim, V. Ratovelomanana-Vidal, N. Jeong, Adv. Synth.
1
(
Catal. 2010, 352, 2032–2040.
[
12] pK (CH OH) = 15.5; pK (glycerol) = 14.4. W. L. F. Armarego,
a
3
a
Supporting Information (see footnote on the first page of this arti-
C. L. Lin Chai, in: Purification of Laboratory Chemicals, 6th
cle): Additional NMR spectra (Figures S1–S8) and Scheme S1.
ed., Elsevier, Oxford, 2009.
[13] The signals corresponding to glycerol (width at middle height
2
7 and 17 Hz) and methanol (width at middle height 14 Hz)
appear larger than those corresponding to the complexes
Ͻ5 Hz), which proves that the exchange proposed between the
Acknowledgments
(
This work was financially supported by the Centre National de la
Recherche Scientifique (CNRS) and the Université Paul Sabatier.
F. C. thanks the Région Midi-Pyrénées and CNRS for a PhD
grant. The authors thank Pierre Lavedan for the helpful NMR dis-
cussions.
two rhodium complexes is slower than that between methanol
and glycerol on the NMR time scale. However, for [Rh(μ-
Cl)(cod)] , the glycerol signals are sharper (width at middle
2
height less than 8 Hz, Figure S3).
[
14] K. Angermund, W. Baumann, E. Dinjus, R. Fornika, H. Görls,
M. Kessler, C. Krüger, W. Leitner, F. Lutz, Chem. Eur. J. 1997,
3, 755–764.
[
1] a) R. A. Sheldon, J. Mol. Catal. A 1996, 107, 75–83; b) R. A.
[15] G. Lamb, M. Clarke, A. M. Z. Slawin, B. Williams, L. Key,
Sheldon, Pure Appl. Chem. 2000, 72, 1233–1246.
Dalton Trans. 2007, 5582–5589.
Eur. J. Inorg. Chem. 2013, 5138–5144
5143
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim