150
H. Wulf et al. / Journal of Molecular Catalysis B: Enzymatic 74 (2012) 144–150
the porous working electrode will certainly lead to lower poten-
tials inside the pores, which will decrease the electrolysis efficiency
[27]. This feature must receive further attention when an upscal-
ing of the technique is intended. It might also be possible that
with reaction time the enzyme becomes oxidized at the electrode
as described by Manjón et al. for glucose dehydrogenase [28],
which can be an explanation for the uncompleted conversion of
the GLA.
The enantiomeric excess of the resulting D-GA decreased
dation of GLA at the electrode could be observed at the
applied potential. At the first measurement, the enan-
tiomeric excess of both reactions was still 98.5%ee and
100%ee but ended up in 91.8 and 87.9%ee, respectively
(Fig. 8).
[1] N.A. Sophos, V. Vasiliou, Chem. Biol. Interact. 143–144 (2003) 5–22.
[2] A. Gruez, V. Roig-Zamboni, S. Grisel, A. Salomoni, C. Valencia, V. Campanacci,
M. Tegoni, C. Cambillau, J. Mol. Biol. 343 (2004) 29–41.
[3] A.C. Ferreira, M.F. Nobre, F.A. Rainey, M.T. Silva, R. Wait, J. Burghardt, A.P. Chung,
M.S. Da Costa, Int. J. Syst. Bacteriol. 47 (1997) 939–947.
[4] K.S. Makarova, M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A.
Vasilenko, M. Zhai, A. Lapidus, A. Copeland, E. Kim, M. Land, K. Mavromatis, S.
Pitluck, P.M. Richardson, C. Detter, T. Brettin, E. Saunders, B. Lai, B. Ravel, K.M.
Kemner, Y.I. Wolf, A. Sorokin, A.V. Gerasimova, M.S. Gelfand, J.K. Fredrickson,
E.V. Koonin, M.J. Daly, PLoS ONE 2 (2007) e955.
[5] R.I. Feldman, H. Weiner, J. Biol. Chem. 247 (1972) 267–272.
[6] P.K. Hammen, A. Allali-Hassani, K. Hallenga, T.D. Hurley, H. Weiner, Biochem-
istry 41 (2002) 7156–7168.
[7] S.J. Perez-Miller, T.D. Hurley, Biochemistry 42 (2003) 7100–7109.
[8] D.R. Wagle, C. Garai, J. Chiang, M.G. Monteleone, B.E. Kurys, T.W. Strohmeyer,
V.R. Hegde, M.S. Manhas, A.K. Bose, J. Org. Chem. 53 (1988) 4227–4236.
[9] P. Areces, E. Carrasco, M.E. Light, M. Santos, J. Plumet, Synlett 2007 (2007)
3180–3182.
[10] C.J.P. Eriksson, T.P.S. Saarenmaa, I.L. Bykov, P.U. Heino, Metabolism 56 (2007)
895–898.
4. Conclusion
[11] S.S. Handa, A. Sharma, K.K. Chakraborti, Fitoterapia 57 (1986) 307.
[12] R. Rosseto, C.M. Tcacenco, R. Ranganathan, J. Hajdu, Tetrahedron Lett. 49 (2008)
3500–3503.
[13] W. Kroutil, H. Mang, K. Edegger, K. Faber, Curr. Opin. Chem. Biol. 8 (2004)
120–126.
In this work we showed the cloning, purification, character-
ization and biocatalysis with two ALDH from E. coli BL21 and
D. geothermalis. Both enzymes could be overexpressed and puri-
fied with IMAC yielding 39–66% active enzyme. The ALDH-11300
with 3.5 U/mg had a better specific activity against glyceralde-
hyde then ALDH-BL21 with 0.6 U/mg. The pH profile was similar
for both enzymes and showed the highest activity at a pH of
8.5. The temperature optimum of activity at 45–50 ◦C was 10 ◦C
higher with ALDH-11300 then with ALDH-BL21. The best sub-
strate according to kcat/KM for ALDH-11300 and ALDH-BL21 were
butyraldehyde and isobutyraldehyde, respectively. Biotransfor-
mations of GLA to GA with ALDH-11300 and electrochemical
cofactor recycling led to concentrations up to 1.8 g/l d-GA with
88%ee.
[14] C.M. Moore, N.L. Akers, A.D. Hill, Z.C. Johnson, S.D. Minteer, Biomacromolecules
5 (2004) 1241–1247.
[15] R.L. Arechederra, S.D. Minteer, Electrochim. Acta 55 (2010) 7679–7682.
[16] S.B. Saidman, J.B. Bessone, Electrochim. Acta 45 (2000) 3151–3156.
[17] C. Kohlmann, W. Märkle, S. Lütz, J. Mol. Catal. B: Enzym. 51 (2008) 57–72.
[18] I. Schröder, E. Steckhan, A. Liese, J. Electroanal. Chem. 541 (2003) 109–115.
[19] G. Bertani, J. Bacteriol. 62 (1951) 293–300.
[20] J. Sambrook, D.W. Russell, Molecular Cloning: A Laboratory Manual, 3rd ed.,
Cold Spring Harbor Laboratory Press, New York, 2001.
[21] U.K. Laemmli, Nature 227 (1970) 680–685.
[22] G.N. Wilkinson, Biochem. J. 80 (1961) 324–332.
[23] R.G. Duggleby, Anal. Biochem. 110 (1981) 9–18.
[24] M. Scheer, A. Grote, A. Chang, I. Schomburg, C. Munaretto, M. Rother, C. Söhngen,
M. Stelzer, J. Thiele, D. Schomburg, Nucl. Acids Res. 39 (2010) 1–7.
[25] J.-E. Jo, S. Mohan Raj, C. Rathnasingh, E. Selvakumar, W.-C. Jung, S. Park, Appl.
Microbiol. Biotechnol. 81 (2008) 51–60.
[26] V. Kasche, R. Zöllner, Hoppe Seylers Z. Physiol. Chem. 363 (1982) 531–534.
[27] R.E. Sioda, Electrochim. Acta 16 (1971) 1569–1576.
Acknowledgements
[28] A. Manjón, J.M. Obón, P. Casanova, V.M. Fernández, J.L. Ilborra, Biotechnol. Lett.
24 (2002) 1227–1232.
The authors thank the “Fachagentur für Nachwachsende
Rohstoffe” (AZ06NR073, 22015906) for financial support.