I. A. Kaluzna et al. / Tetrahedron: Asymmetry 16 (2005) 3682–3689
3689
ketone and 94% of the alcohol product. Final yield of
alcohol: 75%.
Catalysis in Organic Synthesis, 1sted.; John Wiley &
Sons: New York, 1994.
. (a) Noyori, R.; Kitamura, M.; Ohkuma, T. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5356; (b) Noyori, R. Science
2
1
990, 248, 1194; (c) Sandoval, C. A.; Ohkuma, T.; Muniz,
4
.3.3. Large-scale reduction of a-tetralone
.3.3.1. KRED101 9.1 g (0.125 M) substrate 0.34 M
K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490; (d)
Hoffman, R. V.; Maslouh, N.; Cervantes-Lee, F. J. Org.
Chem. 2002, 67, 1045; (e) Corey, E. J.; Link, J. O.
Tetrahedron Lett. 1989, 30, 6275.
4
NADPH (Table 3, entry 6). In 460 mL of a potassium
phosphate buffered solution (200 mM, pH 6.9), 9.1 g of
a-tetralone dissolved in 40 mL of DMSO were added
giving final concentrations of 0.125 M for tetralone
and 8.0% (v/v) for DMSO. In this mixture, 22.5 g of glu-
cose (0.25 M final concentration), 100 mg NADPH
3
. (a) M u¨ ller, M.; Wolberg, M.; Schubert, T.; Hummel, W.
Adv. Biochem. Eng. Biotechnol. 2005, 92, 261; (b) Stewart,
J. D.; Rodriquez, S.; Kayser, M. M. In Enzyme Techno-
logy forPha rm aceutical and Biotechnological Applications ;
Kirst, H. A., Yeh, W.-K., Zmijewski, M. J., Eds.; Marcel
Dekker: New York, 2001; pp 175–207; (c) Kaluzna, I. A.;
Andrew, A. A.; Bonnilla, M.; Martzen, M. R.; Stewart, J.
J. Mol. Catal B: Enzymatic 2002, 17, 101; (d) Katz, M.;
Hahn-Hagerdal, B.; Gorwa-Grauslund, M. F. Enz. Mic-
rob. Technol. 2003, 33, 163; (e) Kaluzna, I. A.; Feske, B.
D.; Wittayanan, W.; Ghiviriga, I.; Stewart, J. D. J. Org.
Chem. 2005, 70, 342; (f) Kaluzna, I. A.; Matsuda, T.;
Sewall, A. K.; Stewart, J. D. J. Am. Chem. Soc. 2004, 126,
(
0.11 mM), 0.25 g of glucose dehydrogenase (GDH)
and 0.35 g of KRED101 were added. The reaction was
stirred at 34 ꢁC using a pH-stat that kept the pH at
6
.9 with the addition of 3 M NaOH solution. After 4 h
and while TLC analysis showed about50% conversion,
another 250 mg of KRED101, 50 mg of GDH and
5
0 mg of NADPH were added to the reaction mixture.
The reaction progress was followed by TLC and after
0 h only product was detected by TLC analysis. At this
1
1
2827–12832; (g) Wolberg, M.; Kaluzna, I. A.; M u¨ ller,
point, the reaction mixture was extracted twice with
M.; Stewart, J. D. Tetrahedron: Asymmetry 2004, 15,
2825–2828; (h) Habrych, M.; Rodriguez, S.; Stewart, J. D.
Biotechnol. Prog. 2002, 18, 257–261; (i) Hanson, R. L.;
Goldberg, S.; Goswami, A.; Tylly, T. P.; Patel, R. N. Adv.
Synth. Catal. 2005, 347, 1073.
. (a) Johanson, T.; Katz, M.; Gorwa-Grauslund, M. FEMS
Yeast Res. 2005, 5, 513; (b) Kataoka, M.; Kita, K.; Wada,
M.; Yasohara, Y.; Hasegawa, J.; Shimizu, S. Appl.
Microbiol. Biotechnol. 2003, 62, 437.
EtOAc (180 mL each time), dried over MgSO and the
4
solvent was evaporated to dryness giving 7.9 g of a light
orange oil in 87% isolated yield. NMR analysis con-
firmed the product structure and purity along with
HPLC analysis. Chiral HPLC using (S,S)-Whelk-01 col-
umn separated the two enantiomers giving the (R)-iso-
mer as the major product (92% ee).
4
5
4
.3.3.2. KRED101 4.4 g (0.75 M) substrate 1.5 M
NADPH (Table 3, entry 7). The reaction mixture
40 mL total volume, 0.25 M Kpi) was prepared as
6
. For recentreview see: (a) Garcia-Urdiales, E.; Alfonso, I.;
Gotoer, V. Chem. Rev. 2005, 105, 313; (b) Homann, M. J.;
Vail, R. B.; Previte, E.; Tamarez, M.; Morgan, B.; Dodds,
D. R.; Zaks, A. Tetrahedron 2004, 60, 789; (c) Wolfgang,
K.; Mang, H.; Edegger, K.; Faber, K. Adv. Synth. Catal.
2004, 346, 125; (d) Nakamura, K.; Yamanaka, R.;
Matsuda, T.; Harada, T. Tetrahedron: Asymmetry 2003,
(
described earlier for the synthesis of benzoyl-hydroxyac-
etone under the same substrate concentration. The only
difference was the initial concentration of KRED101,
which was 0.2 g, while the rest of the reactants were
1
4, 2659; (e) Ishihara, K.; Yamaguchi, H.; Nakajima, N. J.
0
.75 M or 4.4 g for a-tetralone dissolved in 4 mL
Mol Catal. B: Enzym. 2003, 23, 171.
DMSO, 1 M or 7.2 g for D-glucose, 1 mM or 35 mg
for NADPH and 50 mg for GDH. The reaction mixture
was stirred at 34 ꢁC using a pH-stat to keep the pH at
7
8
. Peters, J. In Biotechnology; Rehm, H.-J., Reed, G., Puhler,
A., Stadler, P., Eds.; Biotransformations I; Kelly, D. R.,
Ed.; Wiley-VCH GmbH: Weinheim, 1998; Vol. 8a, pp
6
.9 and after 8 h of reaction an additional 25 mg of
3
91–474.
NADP+, 0.1 g KERD101 and 25 mg GDH were added
to the heterogeneous mixture. The reaction was almost
complete after 24 h (>95% yield). At this point, the mix-
ture was extracted with EtOAc (50 mL 2·), the com-
bined organic layers were back extracted with brine,
dried using Na SO and evaporated to dryness giving
. Kalaitzakis, D.; Rozzell, J. D.; Kambourakis, S.; Smonou,
I. Org. Lett., in press.
9. Zhu, D.; Mukherjee, C.; Rozzell, J. D.; Kambourakis, S.;
Hua, L., Tetrahedron, in press.
10. (a) Zhu, D.; Rios, B. E.; Rozzell, J. D.; Hua, L.
Tetrahedron: Asymmetry 2005, 16, 1541; (b) Zhu, D.;
Mukherjee, C.; Hua, L. Tetrahedron: Asymmetry 2005, 16,
2
4
3
.97 g as an oily compound. TLC and HPLC analysis
3
275.
1. (a) Kambourakis, S.; Rozzell, J. D. Adv. Synth. Catal.
003, 345, 699; (b) Kambourakis, S.; Rozzell, J. D.
revealed a small amountof residual ke to ne (<5%) giving
a final isolated yield of 89% for the alcohol. Chiral
HPLC analysis showed formation of the same enantio-
meric mixture as before.
1
2
Tetrahedron 2004, 60, 663.
1
1
2. Wei, Z.-L.; Lin, G.-Q.; Li, Z.-Y. Bioorg. Med. Chem. 2000,
8
, 1129.
3. (a) PTC Patent WO 2004/087124 A1.; (b) PTC Patent WO
004/094384 A2.
2
References
14. Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G.
G. A. Chem. Commun. 1996, 2625.
1
. (a) Wills, M.; Hannedouche, J. Curr. Opin. Drug Discuss.
Devel. 2002, 5, 881–891; (b) Noyori, R. Asymmetric
15. Kometani, T.; Hisae, T.; Daikaiji, Y.; Michimasa, G. J.
Biosci. Bioeng. 2001, 91, 525.