Communication
RSC Advances
Various aldehydes with morpholine and piperidine reacted 12 M. Kidwai, S. Bhardwaj, N. K. Mishra, A. Jain, A. Kumar and
with phenyl acetylene under optimized conditions to obtain the S. Mozzumdar, Catal. Sci. Technol., 2011, 1, 426–430.
corresponding products in good to excellent yields (82–95%; 13 B. C. Ranu, A. Saha and R. Jana, Adv. Synth. Catal., 2007, 349,
Table 2). We believe that this reported protocol for the synthesis 2690–2696.
of propargylamines is cost effective (as it avoids using expensive 14 Z. Peng and H. Yang, Nano Today, 2009, 4, 143–164.
metal gold) and the yields are comparable.28,35
15 C. Li, K. L. Shuford, Q. H. Park, W. Cai, Y. Li, E. J. Lee and
A proposed mechanism for the A3 coupling reactions on the
S. O. Cho, Angew. Chem., 2007, 119, 3328–3332.
SiO2@Cu nanocatalyst is depicted in Scheme 1 in the ESI.† The 16 R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and
corresponding product is obtained via formation of copper ace- J. G. Zheng, Science, 2001, 294, 1901–1903.
tylide, which has been proposed for A3 coupling reactions.39 In a 17 J. L. Cuya Huaman, K. Sato, S. Kurita, T. Matsumoto and
typical reaction mechanism, the C–H bond is activated by the B. Jeyadevan, J. Mater. Chem., 2011, 21, 7062.
copper species to give a copper acetylide intermediate (I), which 18 A. R. Tao, S. Habas and P. Yang, Small, 2008, 4, 310–325.
reacts with the immonium ion (II) which is formed in situ from 19 C. B. Murray, C. R. Kagan and M. G. Bawendi, Annu. Rev.
the aldehyde and the secondary amine to give the corresponding
propargylamine (III) with elimination of a water molecule.
In summary, monodisperse Cu nanoparticles were synthesised
in a facile one-pot procedure via a disproportionation reaction
route. The synergetic or additive effect of TOP and BrÀ was found
Mater. Sci., 2000, 30, 545–610.
20 M. B. Gawande, P. S. Branco, I. D. Nogueira,
C. A. A. Ghumman, N. Bundaleski, A. Santos,
O. M. N. D. Teodoro and R. Luque, Green Chem., 2013, 15,
682–689.
to be important in the formation of monodisperse Cu nano- 21 H. Guo, Y. Chen, H. Ping, L. Wang and D.-L. Peng, J. Mater.
particles, which produces, by their coordination effect, an instan- Chem., 2012, 22, 8336–8344.
taneous nucleation and slow growth. By depositing the Cu 22 V. A. Peshkov, O. P. Pereshivko and E. V. Van der Eycken,
nanoparticles on a SiO2 support, an excellent catalytic performance Chem. Soc. Rev., 2012, 41, 3790–3807.
in A3 coupling reactions for the synthesis of propargylamines was 23 A. A. Boulton, B. A. Davis, D. A. Durden, L. E. Dyck,
achieved with this high surface area SiO2@Cu nanocatalyst.
Further investigations are in progress in our laboratory.
A. V. Juorio, X. M. Li, I. A. Paterson and P. H. Yu, Drug Dev.
Res., 1997, 42, 150–156.
The authors gratefully acknowledge the nancial support 24 M. Miura, M. Enna, K. Okuro and M. Nomura, J. Org. Chem.,
from the National Basic Research Program of China (no. 1995, 60, 4999–5004.
2012CB933103), the National Outstanding Youth Science 25 J. Dulle, K. Thirunavukkarasu, M. M. C. Mittelmeijer-
Foundation of China (grant no. 50825101), the National Natural
Science Foundation of China (grant no. 51171157 and
Hazeleger, D. Andreeva, R. N. Shiju and G. Rothenberg,
Green Chem., 2013, 15, 1238–1243.
50971108) and the Fundamental Research Funds for the Central 26 G. Villaverde, A. Corma, M. Iglesias and F. Sanchez, ACS
Universities of China (grant no. 201112G015).
Catal., 2012, 2, 399–406.
27 K. K. R. Datta, B. V. S. Reddy, K. Ariga and A. Vinu, Angew.
Chem., Int. Ed., 2010, 49, 5961–5965.
28 K. Layek, R. Chakravarti, M. L. Kantam, H. Maheswaran and
A. Vinu, Green Chem., 2011, 13, 2878–2887.
29 K. M. Reddy, N. S. Babu, I. Suryanarayana, P. S. S. Prasad and
N. Lingaiah, Tetrahedron Lett., 2006, 47, 7563–7566.
30 G. Shore, W. J. Yoo, C. J. Li and M. G. Organ, Chem.–Eur. J.,
2010, 16, 126–133.
31 L. Lili, Z. Xin, G. Jinsen and X. Chunming, Green Chem.,
2012, 14, 1710–1720.
Notes and references
1 Y. Xia, Y. J. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem.,
Int. Ed., 2009, 48, 60–103.
2 N. N. Mallikarjuna and R. S. Varma, Cryst. Growth Des., 2007,
7, 686–690.
3 S.-W. Kim, M. Kim, W. Y. Lee and T. Hyeon, J. Am. Chem. Soc.,
2002, 124, 7642–7643.
4 H. Shipley, K. Engates and A. Guettner, J. Nanopart. Res.,
2011, 13, 2387–2397.
32 C. M. Wei, Z. G. Li and C. J. Li, Org. Lett., 2003, 5, 4473–4475.
5 M. B. Gawande, P. S. Branco and R. S. Varma, Chem. Soc. Rev., 33 Z. G. Li, C. M. Wei, L. Chen, R. S. Varma and C. J. Li,
2013, 42, 3371–3393.
Tetrahedron Lett., 2004, 45, 2443–2446.
6 S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. Xia 34 C. M. Wei and C. J. Li, J. Am. Chem. Soc., 2003, 125, 9584–
and J. Moon, Adv. Funct. Mater., 2008, 18, 679–686. 9585.
7 J. L. Cuya Huaman, K. Sato, S. Kurita, T. Matsumoto and 35 M. Kidwai, V. Bansal, A. Kumar and S. Mozumdar, Green
B. Jeyadevan, J. Mater. Chem., 2011, 21, 7062–7069. Chem., 2007, 9, 742–745.
8 H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, 36 H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai
J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee and
Y. Cui, Nano Lett., 2010, 10, 4242–4248.
9 A. R. Rathmell and B. J. Wiley, Adv. Mater., 2011, 23, 4798–
4803.
10 J.-H. Lin and V. V. Guliants, Appl. Catal., A, 2012, 445–446,
187.
and P. Yang, Angew. Chem., 2006, 118, 7988–7992.
37 E. Ye, S. Zhang, S. Liu and M. Han, Chem.–Eur. J., 2011, 17,
3074.
38 H. Guo, Y. Chen, H. Ping, J. Jin and D. Peng, Nanoscale, 2013,
5, 2394.
39 R. R. Julian, J. A. May, B. M. Stoltz and J. L. Beauchamp,
J. Am. Chem. Soc., 2003, 125, 4478–4486.
11 B. Sarkar, et al., Green Chem., 2012, 14, 2600–2606.
This journal is ª The Royal Society of Chemistry 2013
RSC Adv., 2013, 3, 19812–19815 | 19815