Please do not adjust margins
Green Chemistry
Page 4 of 6
COMMUNICATION
Journal Name
centrifuged and the solid Ru/TiO
2
-n catalyst was recovered, 10.
Dumesic, Science, 2010, 327, 1110D-1O1I1: 140..1039/C8GC03529F
C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong and J. Beltramini,
Chemical Society Reviews, 2011, 40, 5588-5617.
J. Q. Bond, A. A. Upadhye, H. Olcay, G. A. Tompsett, J. Jae,
R. Xing, D. M. Alonso, D. Wang, T. Zhang, R. Kumar, A.
Foster, S. M. Sen, C. T. Maravelias, R. Malina, S. R. H.
Barrett, R. Lobo, C. E. Wyman, J. A. Dumesic and G. W.
Huber, Energy & Environmental Science, 2014, 7, 1500-
followed by rinsing with THF and centrifugation (3×30 mL). The
1
1
1.
2.
Ru/TiO
2
-n catalyst was reused directly for the next run after
o
drying at 60 C for 12 h in a vacuum oven. The results in Fig. 5A
clearly showed that the catalysts can be used at least 5 times
without obvious decrease in the conversion of LA and the
reaction selectivity. The TEM image of the Ru/TiO
2
-n after used
5
times is shown in Fig. 5B. It can be seen that the Ru
nanoparticles didn’t aggregate compared with the virgin
catalyst.
1
523.
13.
B. Girisuta, L. Janssen and H. J. Heeres, Industrial &
Engineering Chemistry Research, 2007, 46, 1696-1708.
J. J. Bozell and G. R. Petersen, Green Chemistry, 2010, 12,
In summary, we have demonstrated a facile and efficient
strategy for facilitating the GVL from LA by using quantum- 14.
sized Ru dots decorated ultra-thin anatase TiO nanosheets as
the catalysts under mild conditions. The support effect has
been largely attributed to the high energy of TiO (001) which
5
39-554.
W. R. H. Wright and R. Palkovits, ChemSusChem, 2012, 5,
657-1667.
W. Li, J.-H. Xie, H. Lin and Q.-L. Zhou, Green Chemistry,
012, 14, 2388-2390.
2
1
1
1
1
1
5.
6.
7.
8.
9.
1
2
leads to the stronger interaction of the Ru nanoparticles and
the support. More Ru (0) is important for the improving
activity of the Ru/TiO -n. The results could also provide helpful
2
insights for the efficient catalyst for the other reaction using
high energy support.
2
J. Q. Bond, D. M. Alonso, R. M. West and J. A. Dumesic,
Langmuir, 2010, 26, 16291-16298.
S. G. Wettstein, D. M. Alonso, Y. Chong and J. A. Dumesic,
Energy & Environmental Science, 2012, 5, 8199-8203.
F. D. Pileidis and M.-M. Titirici, ChemSusChem, 2016, 9,
5
62-582.
Conflicts of interest
20.
P. J. Deuss, K. Barta and J. G. de Vries, Catalysis Science &
Technology, 2014, 4, 1174-1196.
The authors declare no conflicts of interest.
2
2
1.
2.
A. M. R. Galletti, C. Antonetti, V. De Luise and M.
Martinelli, Green Chemistry, 2012, 14, 688-694.
P. P. Upare, J.-M. Lee, D. W. Hwang, S. B. Halligudi, Y. K.
Hwang and J.-S. Chang, Journal of Industrial and
Engineering Chemistry, 2011, 17, 287-292.
C. Michel, J. Zaffran, A. M. Ruppert, J. Matras-Michalska,
M. Jedrzejczyk, J. Grams and P. Sautet, Chemical
Communications, 2014, 50, 12450-12453.
Acknowledgements
This work was supported by the National Key Research and
2
3.
Development
017YFA0403103), National Natural Science Foundation of China
21603235), Chinese Academy of Sciences (QYZDY-SSW-SLH013),
Program
of
China
(2018YFB0605801,
2
(
2
2
2
2
2
4.
5.
6.
7.
8.
Z.-p. Yan, L. Lin and S. Liu, Energy & Fuels, 2009, 23, 3853-
the Recruitment Program of Global Youth Experts of China.
3
858.
B. Coq, A. Bittar and F. Figueras, Applied Catalysis, 1990,
9, 103-121.
5
Notes and references
M. G. Al-Shaal, W. R. H. Wright and R. Palkovits, Green
Chemistry, 2012, 14, 1260-1263.
C. Xiao, T.-W. Goh, Z. Qi, S. Goes, K. Brashler, C. Perez and
W. Huang, Acs Catalysis, 2016, 6, 593-599.
S. Ishikawa, D. R. Jones, S. Iqbal, C. Reece, D. J. Morgan, D.
J. Willock, P. J. Miedziak, J. K. Bartley, J. K. Edwards, T.
Murayama, W. Ueda and G. J. Hutchings, Green
Chemistry, 2017, 19, 225-236.
1
.
N. Ta, J. J. Liu, S. Chenna, P. A. Crozier, Y. Li, A. Chen and
W. Shen, Journal of the American Chemical Society, 2012,
1
34, 20585-20588.
2
.
D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky,
Journal of the American Chemical Society, 2014, 136,
1
0546-10546.
3
4
5
6
.
.
.
.
W. Jiang, B. Xu, Z. Xiang, X. Liu and F. Liu, Applied Catalysis
A: General, 2016, 520, 65-72.
S. Wu, Q. He, C. Zhou, X. Qi, X. Huang, Z. Yin, Y. Yang and
H. Zhang, Nanoscale, 2012, 4, 2478-2483.
J. Lee, J. C. Park and H. Song, Advanced Materials, 2008,
2
G. Chen, R. Gao, Y. Zhao, Z. Li, G. I. N. Waterhouse, R. Shi,
J. Zhao, M. Zhang, L. Shang, G. Sheng, X. Zhang, X. Wen, L.
Z. Wu, C. H. Tung and T. Zhang, Adv Mater, 2018, 30.
A. M. Ruppert, J. Grams, M. Jedrzejczyk, J. Matras-
Michalska, N. Keller, K. Ostojska and P. Sautet,
ChemSusChem, 2015, 8, 1538-1547.
2
3
9.
0.
W. Luo, M. Sankar, A. M. Beale, Q. He, C. J. Kiely, P. C. A.
Bruijnincx
and
B.
M.
Weckhuysen,
Nature
Communications, 2015, 6.
W. Luo, U. Deka, A. M. Beale, E. R. H. van Eck, P. C. A.
Bruijnincx and B. M. Weckhuysen, Journal of Catalysis,
0, 1523-1528.
2
013, 301, 175-186.
X. Q. Gong and A. Selloni, Journal of Physical Chemistry B,
005, 109, 19560-19562.
3
3
1.
2.
2
7
.
F. De Angelis, G. Vitillaro, L. Kavan, M. K. Nazeeruddin and
M. Graetzel, Journal of Physical Chemistry C, 2012, 116,
1
8124-18131.
8
9
.
.
C. Liu, X. Han, S. Xie, Q. Kuang, X. Wang, M. Jin, Z. Xie and
L. Zheng, Chemistry, an Asian journal, 2013, 8, 282-289.
F. Wang, H. Z. Wu, C. L. Liu, R. Z. Yang and W. S. Dong,
Carbohydrate research, 2013, 368, 78-83.
3
3
3.
4.
A. Selloni, Nature Materials, 2008, 7, 613-615.
S. Li, H. Hu and Y. Bi, Journal of Materials Chemistry A,
2
016, 4, 796-800.
3
5.
C. Liu, X. Han, S. Xie, Q. Kuang, X. Wang, M. Jin, Z. Xie and
L. Zheng, Chemistry-an Asian Journal, 2013, 8, 282-289.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins