5
070
D. Renuga et al. / Tetrahedron Letters 53 (2012) 5068–5070
Acknowledgements
N
C
O
S
C
O
N
S
H
H
H
Authors express their thanks to DRDO (ERIP/ER/1006004/M/01/
1333 dated 23-05-2011) for financial assistance in the form of a
major sponsored project.
N
N
TBAF
F-
OH
HO
H
ꢀ
Scheme 2. Possible structure of complex formed between receptor 1 and F .
Supplementary data
Rec
-
9
7
6
4
3
1
0
5
0
5
0
5
Rec+2 eq F
-
4
References and notes
Rec+2 eq H PO
2
-
Rec+2 eq AcO
-
1. Oehme, O. S.; Wolfbeis, A. Microchim. Acta 1997, 126, 177–192.
2
3
Rec+2 eq OH
.
.
Hisamoto, H.; Suzuki, K. Anal. Chem. 1999, 18, 513–524.
(a) Haddou, H.; Wiskur, S.; Lynch, V.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123,
11296–11297; (b) Toal, S. J.; Trogler, W. C. J. Mater. Chem. 2006, 16, 2871–2883;
-
Rec+2 eq Cl
-
Rec+2 eq Br
(
c) Gunnlaugsson, T.; Kruger, P.; Jensen, P.; Tierney, J.; Ali, H.; Hussey, G. J. Org.
Chem. 2005, 70, 10875–10878.
4
.
(a) Selective reviews and books for chemosensor; Valeur B; Molecular
Fluorescence; Wiley-VCH: Weinheim, 2002; (b) Lakowicz, J. R.; 4, Probe
Design and Chemical Sensing; 1994.; (c) De Silva, A. P.; Gunaratne, H.;
Gunnlaugsson, T.; Huxley, A.; McCoy, C.; Rademacher, J. T.; Rice, T. E. Chem. Rev.
1997, 97, 1515–1566; (d) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev.
2
2
000, 100, 2537–2574; (e) Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev.
008, 108, 1517–1549.
5. Kleerekoper, M. Endocrinol. Metab. Clin. North Am. 1998, 27, 441–452.
6.
Zhipei, Y.; Kai, Z.; FangbinGong; Shayu, L.; Jun, C.; Jin, S. M.; Lyubov, N. S.;
Albina, I.; Mikhaleva; Boris, T. A.; Guoqiang, Y. Environ. Health Crit. 2002, 8, 227.
Gale, P.A.; Atwood, J.L.; Steed, J.W.; (Eds.), Encyclopedia of Supramolecular
Chemistry; Marcel Dekker, New York, 2004, 31-41.
4
80
500
520
540
560
580
600
Wavenumber (nm)
7.
ꢀ
5
Figure 3b. Fluorescence titration spectrum of receptor 1 (2.5 ꢁ 10 M) upon
8. Gale, P.A.; Sessler, J.L.; Atwood, J.L.; Steed, J.W.; (Eds.), Encyclopedia of
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
titration with anions in CH
3
CN (H
2
PO
4
, AcO , OH , Cl , Br ).
Supramolecular Chemistry; Marcel Dekker, New York,2004, 1176-1185.
Pfeffer, F. M.; Buschgens, A. M.; Barnett, N. W.; Gunnlaugsson, T.; Kruger, P. E.
9
.
Tetrahedron Lett. 2005, 46, 6579–6584.
10. Turner, D. R.; Smith, B.; Spencer, E. C.; Goeta, A. E.; Evans, I. R.; Tocher, D. A.;
Howard, J. A. K.; Steed, J. W. New J. Chem. 2005, 29, 90–98.
1. Turner, D. R.; Paterson, M. J.; Steed, J. W. J. Org. Chem. 2006, 71, 1598–1608.
2. Pfeffer, F. M.; Lim, K. F.; Sedgwick, K. J. Org. Biomol. Chem. 2007, 5, 1795–1799.
strong emission band at 510 and 545 nm. Fig. 3a shows the spectral
variation of the receptor upon gradual addition of TBAF.
1
1
Observed enhancement in fluorescent intensity upon the incre-
mental addition (0–2 equiv) of F ions may be due to the efficient
charge transfer between guest–host species. This highly indicates
13. Kang, S. O.; Begum, R. A.; James, K. B. Angew. Chem. Int. Ed. 2006, 45, 7882–
ꢀ
7894.
14. Boiocchi, M.; Boca, L. D.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M.;
Monzani, E. J. Am. Chem. Soc. 2004, 126, 16507–16514.
that there is a strong sensing action taking place between receptor
15. Ghosh, K.; Masanta, G.; Chattopadhyay, A. P. Tetrahedron Lett. 2007, 48, 6129–
132.
ꢀ
6
1
and F ion through hydrogen bonding formation as shown in
1
1
6. Veale, E. B.; Gunnlaugsson, T. J. Org. Chem. 2008, 73, 8073–8076.
7. (a) Udhayakumari, D.; Saravanamurthy, S.; Ashok, M.; Velmathi, S. Tetrahedron
Lett. 2011, 52, 4631–4635; (b) Velmathi, S.; Reena, V.; Suganya, S.; Anandan, S.
J. Fluor. 2012, 22, 155–162; (c) Prabhu, S.; Saravanamoorthy, S.; Ashok, M.;
Velmathi, S. J. Lumin. 2012, 132, 979–986.
Scheme 2. Emission spectrum of receptor 1 with other anions is
shown in Figure 3b. Only in the case of acetate ions there was a
marginal increase in the emission intensity and other anions did
not show any change. Thus it can be concluded that the receptor
18. Fridman, N.; Kaftory, M. Pol. J. Chem. 2007, 81, 825–832.
ꢀ
1
can be utilized as a selective chemosensor for F ions in the pres-
1
9. Synthesis of receptor 1: To a hot solution of 2,5-thiophene dicarboxaldehyde
(1 mmol, 0.139 g) in 10 mL of ethanol was added 2 mmol (0.218 g) of o-amino
phenol in 20 mL of ethanol and the mixture was slowly refluxed for 3 h at
ence of other interfering ions.
In conclusion, we have designed and synthesized a highly sen-
70 °C. On cooling, a yellow coloured solid separated out, it was filtered and
ꢀ
sitive thiophene based chemosensor for the detection of F ion
washed with ethanol and then dried in vacuum. Yield was 0.255 g (79%). The
ꢀ
1
selectively. The chemosensor can be utilized for the detection of
structure of the ligand was confirmed by: IR (KBr
(C@N), 1452 (C@C), 1227 (C–O), 1368 (C–N). 1H NMR (d ppm, 400 MHz, DMSO-
): 6.81 (1H, s), 6.83 (1H, dd), 6.95 (1H, s), 7.18 (1H, dd), 7.7 (1H, s), 8.9 (1H, s),
m cm ) 3376 (OH), 1598
ꢀ
ꢀ
ꢀ
ꢀ
F
in the presence of competing anions such as Cl , Br , AcO ,
d
6
ꢀ
ꢀ
OH , and H
2
PO
4
ions. The changes in absorption and fluorescence
13
9
.2 (1H, s); C NMR (d ppm, 100 MHz, DMSO-d
127.68, 137.19, 150.96, 133.11, 146.08, 152.87.
0. Gabr, A. A. Spectrochim. Acta A. 1990, 46, 1751–1757.
6
): 116.22, 119.61, 122.44,
spectra were driven by the hydrogen bonding between receptor 1
and fluoride anions.
2