Organic Letters
Letter
efficient chirality transfer process of the Ireland−Claisen
rearrangement can be explained by using a transition state
depicted in Scheme 2. In the chairlike transition state, the phenyl
group takes the pseudoequatrial position. Furthermore, in the
ketene acetal moiety, the side chain with a MEM group favors the
equatorial position with the aid of the chelate effect. Actually,
when a MOM group or a TBS group was used for the protection
of the primary alcohol in place of the MEM group in 4, the
enantiomeric excesses of the products formed by the Ireland−
Claisen rearrangement decreased (MOM, 81% ee; TBS, 0.3%
ee).
Therefore, the structure and the absolute configuration of
kopsiyunnanine K were established, as shown in formula 1.
In conclusion, we have succeeded in the asymmetric total
synthesis of kopsiyunnanine K (1), an indole alkaloid that was
newly isolated from Kopsia arborea, via an asymmetric Ireland−
Claisen rearrangement and an intramolecular diastereoselective
Pictet−Spengler reaction, and proved its unique rearranged
skeleton and absolute configuration. Its biological activity is
currently being evaluated.
ASSOCIATED CONTENT
Supporting Information
■
Next, an amine function was introduced to 9 by deprotection
of the MEM group followed by the Mitsunobu reaction with
*
S
NsNH to afford amide 10 (Scheme 3). After ozonolysis of 10,
2
Experimental procedures for the isolation of kopsiyunna-
nine K (1), preparation of compounds 4−6, 9−12, and
synthetic 1, and copies of NMR spectral data for natural 1,
X-ray data of compound 1 (CIF)
Scheme 3. Synthesis of Kopsiyunnanine K (1)
AUTHOR INFORMATION
■
*
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Nos.
6293023 and 16H05094, and The Uehara Memorial
■
2
Foundation.
REFERENCES
■
(
1) (a) Wong, S.; Chong, K.; Lim, K.; Lim, S.; Low, Y.; Kam, T. Org.
Lett. 2016, 18, 1618−1621. (b) Yap, W.; Gan, C.; Sim, K.; Lim, S.; Low,
Y.; Kam, T. J. Nat. Prod. 2016, 79, 230−239. (c) Wong, S.; Gan, C.; Lim,
K.; Ting, K.; Low, Y.; Kam, T. Org. Lett. 2015, 17, 3628−3631.
(
d) Cheenpracha, S.; Raksat, A.; Ritthiwigrom, T.; Laphookhieo, S. Nat.
6
,7
alkylation of the resultant aldehyde−amide with indole unit 11
Prod. Commun. 2014, 9, 1441−1443. (e) Ahmad, K.; Hirasawa, Y.;
Nugroho, A. E.; Hadi, A. H. A.; Morita, H. Heterocycles 2012, 86, 1611−
1619. (f) Yang, Y.; Zuo, W.; Zhao, Y.; Dong, W.; Mei, W.; Dai, H. Planta
Med. 2012, 78, 1881−1884. (g) Chen, J.; Li, X.; Li, N.; Lu, J.; Xu, X.;
Duan, H.; Qin, L. Chem. Nat. Compd. 2012, 48, 834−835. (h) Tan, M.;
Yin, C.; Tang, C.; Ke, C.; Lin, G.; Ye, Y. Planta Med. 2011, 77, 939−944.
was executed to give aldehyde 12. Deprotection of the Ns group
on the Nb position in 12 followed by intramolecular
diastereoselective Pictet−Spengler reaction of the resultant
amine in the presence of trifluoroacetic acid gave kopsiyunnanine
K (1) as a single diastereomer in a quantitative yield.
Recrystallization of the product afforded optically pure 1.
The structure and the 16R,20R configuration of synthetic 1
were confirmed by X-ray crystallographic analysis (Figure 4).
Synthetic 1 was identical in all respects to the natural
(
i) Chen, J.; Chen, J.-J.; Yao, X.; Gao, K. Org. Biomol. Chem. 2011, 9,
5
334−5336. (j) Yap, W.; Gan, C.; Low, Y.; Choo, Y.; Etoh, T.; Hayashi,
M.; Komiyama, K.; Kam, T. J. Nat. Prod. 2011, 74, 1309−1312. (k) Kam,
T.; Lim, K. Alkaloids of Kopsia. In The Alkaloids; Cordell, G. A., Ed.;
Academic Press: San Diego, 2008; Vol. 66, pp 1−111.
2
3
compound, including the optical property {synthetic: [α]
(2) (a) Kitajima, M.; Watanabe, K.; Maeda, H.; Kogure, N.; Takayama,
H. Org. Lett. 2016, 18, 1912−1915. (b) Takanashi, N.; Suzuki, K.;
Kitajima, M.; Takayama, H. Tetrahedron Lett. 2016, 57, 375−378.
D
2
4
−
68.1 (c 0.04, MeOH), natural: [α]D −60.0 (c 0.02, MeOH)}.
(c) Ishida, H.; Kimura, S.; Kogure, N.; Kitajima, M.; Takayama, H. Org.
Biomol. Chem. 2015, 13, 7762−7771. (d) Ishida, H.; Kimura, S.; Kogure,
N.; Kitajima, M.; Takayama, H. Tetrahedron 2015, 71, 51−56.
(e) Azuma, M.; Yoshikawa, T.; Kogure, N.; Kitajima, M.; Takayama,
H. J. Am. Chem. Soc. 2014, 136, 11618−11621. (f) Terada, Y.; Kitajima,
M.; Taguchi, F.; Takayama, H.; Horie, S.; Watanabe, T. J. Nat. Prod.
2
014, 77, 1831−1838. (g) Harada, M.; Asaba, K.; Iwai, M.; Kogure, N.;
Kitajima, M.; Takayama, H. Org. Lett. 2012, 14, 5800−5803.
3) (a) Kitajima, M.; Koyama, T.; Wu, Y.; Kogure, N.; Zhang, R.;
(
Takayama, H. Nat. Prod. Commun. 2015, 10, 49−51. (b) Kitajima, M.;
Murakami, Y.; Takahashi, N.; Wu, Y.; Kogure, N.; Zhang, R.; Takayama,
H. Org. Lett. 2014, 16, 5000−5003. (c) Kogure, N.; Suzuki, Y.; Wu, Y.;
Kitajima, M.; Zhang, R.; Takayama, H. Tetrahedron Lett. 2012, 53,
Figure 4. Crystal structure of 1.
C
Org. Lett. XXXX, XXX, XXX−XXX