Organic Letters
Letter
(2) (a) Selvam, T. P.; James, C. R.; Dniandev, P. V.; Valzita, S. K. Res.
Pharm. 2012, 2, 1. (b) Tavares, F. X.; Boucheron, J. A.; Dickerson, S. H.;
Griffin, R. J.; Preugschat, F.; Thomson, S. A.; Wang, T. Y.; Zhou, H. − Q.
J. Med. Chem. 2004, 47, 4716. (c) Fabbro, D.; Ruetz, S.; Buchdunger, E.;
Cowan-Jacob, S. W.; Fendrich, G.; Liebetanz, J.; Mestan, J.; O’Reilly, T.;
Traxler, P.; Chaudhuri, B.; Fretz, H.; Zimmermann, J.; Meyer, T.;
Caravatti, G.; Furet, P.; Manley, P. W. Pharmacol. Ther. 2002, 93, 79−98
and references cited therein.
Figure 2. Selective palladium-catalyzed amination of substituted 2-
chloro-4-thiomethoxypyrimidines.
(3) For reviews on regioselective cross-couplings of polyhalogenated
heterocycles, see: (a) Rossi, R.; Bellina, F.; Lessi, M. Adv. Synth. Catal.
2012, 354, 1181. (b) Fairlamb, I. J. S. Chem. Soc. Rev. 2007, 36, 1036.
(c) Schroter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245.
̈
In summary, we have developed several effective approaches
for the preparation of 2-aminopyrimidines through the
amination of substituted polychloropyrimidines and chlorothio-
methoxy pyrimidines. Palladium-catalyzed aminations of 5-
substituted di- and trichloropyrimidines by aryl and heteroaryl-
amines afford the 2-substituted products in excellent levels of
regioselectivity. More nucleophilic dialkylamines also exhibit 2-
amination but do not require a palladium catalyst for a
regioselective reaction. For chloropyrimidines without sterically
encumbering 5-substituents, an attractive alternative route
utilizing readily prepared 2-chloro-4-thiomethoxypyrimidine
analogues results in exclusive 2-amination. Taken together,
these methods should aid the further development of function-
alized 2-aminopyrimidines in application-focused research.
(4) For recent examples, see: (a) Joubran, L.; Jackson, W. R.; Campi, E.
M.; Robinson, A. J.; Wells, B. A.; Godfrey, P. D.; Callaway, J. K.; Jarrot, B.
Aust. J. Chem. 2003, 56, 597. (b) Montebugnoli, D.; Bravo, P.; Corradi,
E.; Dettori, G.; Mioskowski, C.; Volonterio, A.; Wagner, A.; Zanda, M.
Tetrahedron 2002, 58, 2147. (c) Luthin, D. R.; Hong, Y.; Tompkins, E.;
Anderes, K. L.; Paderes, G.; Kraynov, E. A.; Castro, M. A.; Nared-Hood,
K. D.; Castillo, R.; Gregory, M.; Vazir, H.; May, J. M.; Anderson, M. B.
Bioorg. Med. Chem. Lett. 2002, 12, 3635. (d) Schomaker, J. M.; Delia, T.
J. J. Heterocycl. Chem. 2000, 37, 1457.
(5) Recent computational work has sought to explain the observed
preference for coupling at the 4-chloro position, see: (a) Garcia, Y.;
Schoenebeck, F.; Legault, C. Y.; Merlic, C. A.; Houk, K. N. J. Am. Chem.
Soc. 2009, 131, 6632. (b) Legault, C. Y.; Garcia, Y.; Merlic, C. A.; Houk,
K. N. J. Am. Chem. Soc. 2007, 129, 12664.
(6) Peng, Z. − H.; Journet, M.; Humphrey, G. Org. Lett. 2006, 8, 395.
(7) For the regioselective preparation of 2-aminopyrimidines via
amination by N-substituted cyclic amines with POCl3, see: (a) Yoshida,
K.; Taguchi, M. J. Chem. Soc., Perkin Trans. 1 1992, 919. (b) Yoshida, K.;
Tanaka, T.; Ohtaka, H. J. Chem. Soc., Perkin Trans. 1 1991, 1279.
(8) (a) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27. (b) Surry, D.
S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338. (c) Martin, R.;
Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
(9) For the preparation of precatalysts P1−P5, see: (a) Bruno, N. C.;
Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4, 916. (b) Bruno, N. C.;
Buchwald, S. L. Org. Lett. 2013, 15, 2876.
(10) (a) Maiti, D.; Fors, B. P.; Henderson, J. L.; Nakamura, Y.;
Buchwald, S. L. Chem. Sci. 2011, 2, 57. (b) Fors, B. P.; Watson, D. A.;
Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 13552.
(11) Catalyzed or noncatalyzed aminations carried out in more polar
solvents such as NMP resulted in desilylation as well as decomposition
of 1. The same observation was made when aminations were carried out
with relatively stronger bases such as LDA and LiHMDS.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Synthetic procedures, characterization of products, and
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare the following competing financial
interest(s): MIT has patents on some of the ligands and
precatalysts described in this work from which S.L.B. as well as
former or current co-workers receive royalty payments.
(12) Fors, B. P.; Davis, N. R.; Buchwald, S. L. J. Am. Chem. Soc. 2009,
131, 5766.
̈
(13) Farha, O. K.; Yazaydin, A. O.; Eryazici, I.; Malliakas, C. D.; Hauser,
B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat.
Chem. 2010, 2, 944.
(14) Desilylation of 4 in THF with TBAF resulted in substantial
amounts of nucleophilic aromatic substitution, affording the respective
fluorinated pyrimidine product. Using a less polar solvent such as
toluene circumvented this issue.
ACKNOWLEDGMENTS
■
Research reported in this publication was supported by Merck
and Co. We thank Dr. Aaron C. Sather (MIT), Dr. Jeffery Bandar
(MIT), Dr. Michael T. Pirnot (MIT), and Dr. Yi-Ming Wang
(MIT) for aid in the preparation of this manuscript.
(15) (a) Martínez, M. M.; Perez-Caaveiro, C.; Pena-Lopez, M.;
́
́
̃
Sarandeses, L. A.; Sestelo, J. P. Org. Biomol. Chem. 2012, 10, 9045.
(b) Liu, M.; Su, S. − J.; Jung, M. − C.; Qi, Y.; Zhao, W. − M.; Kido, J.
Chem. Mater. 2012, 24, 3817.
REFERENCES
■
(1) (a) Malik, I.; Ahmed, Z.; Reimann, S.; Ali, I.; Villinger, A.; Langer,
P. Eur. J. Org. Chem. 2011, 2011, 2088. (b) Hadad, C.; Achelle, S.;
(16) For recent examples of C−C cross-coupling via metal-mediated
C−S activation of aryl and heteroaryl thioethers, see: (a) Lee, K.;
Counceller, C. M.; Stambuli, J. P. Org. Lett. 2009, 11, 1457. (b) Metzger,
A.; Melzig, L.; Despotopoulou, C.; Knochel, P. Org. Lett. 2009, 11, 4228.
(c) Kusturin, C.; Liebeskind, L. S.; Rahman, H.; Sample, K.; Schweitzer,
B.; Srogl, J.; Neumann, W. L. Org. Lett. 2003, 5, 4349. (d) Liebeskind, L.
S.; Srogl, J. Org. Lett. 2002, 4, 979. and references cited therein. For
reviews, see: (e) Wang, L.; He, W.; Yu, Z. Chem. Soc. Rev. 2013, 42, 599.
(f) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev.
2013, 42, 5042.
García-Martínez, J. C.; Rodríguez-Lop
(c) Radi, M.; Schenone, S.; Botta, M. Org. Biomol. Chem. 2009, 7, 2841.
(d) Ortiz, R. P.; Casado, J.; Hernandez, V.; Lopez, V. T.; Navarrete, J. A.
L.; Ratner, M. A.; Facchetti, A.; Marks, T. Chem. - Eur. J. 2009, 15, 5023.
(e) Achelle, S.; Ramondence, Y.; Marsais, F.; Ple, N. Eur. J. Org. Chem.
́
ez, J. J. Org. Chem. 2011, 76, 3837.
́
́
́
2008, 2008, 3129. (f) Itami, K.; Yamazaki, D.; Yoshida, J.-I. J. Am. Chem.
Soc. 2004, 126, 15396. (g) Hughes, G.; Wang, C.; Batsanov, A. S.; Fern,
M.; Frank, S.; Bryce, M. R.; Perepichka, I. F.; Monkman, A. P.; Lyons, B.
P. Org. Biomol. Chem. 2003, 1, 3069. (h) Undeim, K.; Benneche, T. In
Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Scriben, E. F.
V., Eds.; Elsevier: Oxford, U.K., 1996; Vol. 6, pp 93−231 and references
cited therein.
D
Org. Lett. XXXX, XXX, XXX−XXX