Table 3 Comparison of the catalytic performances for chemoselective hydrogenation of a,b-unsaturated aldehydes
Selectivity (%)
Au
Reaction
time/h
Saturated
Saturated Unsaturated
Substrates
Acrolein
Catalysts
loadings/wt%
T/◦C
Conversion (%)
aldehyde a alcohol b
alcohol c
Others d
Au/Fe(OH)x
Au/Fe2O3-4
Au/Fe2O3-WGC
Au/Fe(OH)x
Au/Fe2O3-4
Au/Fe2O3-WGC
Au/Fe(OH)x
Au/Fe2O3-4
1.0
1.1
4.4
1.0
1.1
4.4
1.0
1.1
4.4
65
65
65
100
100
100
100
100
100
3
3
3
11
11
11
12
12
12
89
67
73
93
98
88
86
98
81
76
75
70
24
41
24
11
71
72
1
—
—
12
30
13
6
—
—
—
63
25
61
82
4
23
25
23
1
4
2
1
6
10
Citral
Cinnamaldehyde
19
5
Au/Fe2O3-WGC
13
a Saturated aldehyde: propanal for acrolein, citronellal for citral and hydrocinnamaldehyde for cinnamaldehyde. b Saturated alcohol: 1-propanol for
acrolein, citronellol for citral and 3-phenylpropanol for cinnamaldehyde. c Unsaturated alcohol: allyl alcohol for acrolein, geraniol and nerol for citral
and cinnamic alcohol for cinnamaldehyde. d Others: acrylic acid and formyldihydropyran for acrolein, 1,1-diethoxy-3,7-dimethylocta-2,6-diene and
ethyl-3,7-dimethyloct-6-enoate for citral and 1-(3,3-diethoxypropyl)benzene for cinnamaldehyde.
Commun., 2004, 904; G. Lue, R. Zhao, G. Qian, Y. Qi, X. Wang and J.
Conclusions
Suo, Catal. Lett., 2004, 97, 115.
10 F. Shi, Q. H. Zhang, Y. B. Ma, Y. D. He and Y. Q. Deng, J. Am. Chem.
Soc., 2005, 127, 4182.
Au catalysts could exhibit enhanced activity and selectivity in
11 F. Shi and Y. Q. Deng, J. Catal., 2002, 211, 548.
It was found for the first time that ferric hydroxide supported
the chemoselective hydrogenation of aromatic nitro compounds.
While after calcining at elevated temperatures and with aggrega-
tion of Au species (although the size only increased to 3–5 nm)
Au/Fe2O3-4 exhibited an inferior catalytic performance. Though
the detailed mechanism is not clear at this stage, it is proposed
that Au subnano clusters play an important role in the enhanced
catalytic performance, though the supports may also make a
contribution. This catalyst preparation strategy may be extended
to other reactions with satisfactory results.
12 M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet and
B. Delmon, J. Catal., 1993, 144, 175.
13 C. N. R. Rao, G. U. Kulkarni, P. J. Thomasa and P. P. Edwardsb, Chem.
Soc. Rev., 2000, 29, 27.
14 C. N. R. Rao, G. U. Kulkarni, P. J. Thomas and P. P. Edwards, Chem.–
Eur. J., 2002, 8, 29.
15 J. Zheng, P. R. Nicovich and R. M. Dickson, Annu. Rev. Phys. Chem.,
2007, 58, 409.
16 V. Lindberg and B. Hellsing, J. Phys.: Condens. Matter, 2005, S1075.
17 J. Zheng, C. Zhang and R. M. Dickson, Phys. Rev. Lett., 2004, 93,
0777402.
18 V. Lindberg, T. Petersson and B. Hellsing, Surf. Sci., 2006, 600, 6.
19 G. H. Woehrle, M. G. Warner and J. E. Hutchison, J. Phys. Chem. B,
2002, 106, 9979.
20 H. N. Aiyer, V. Vijayakrishnan, G. N. Subbanna and C. N. R. Rao,
Surf. Sci., 1994, 313, 392.
21 S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray,
T. G. Schaaff, J. T. Khoury, M. M. Alvarez and R. L. Whetten, Science,
1998, 280, 2098.
Acknowledgements
This work was financially supported by the National Sciences
Foundation of China (No. 20773146). The authors would like
to thank Mr Chen for the HRTEM investigation, Ms L. He for
the XRD investigation, Ms L. Gao for the XPS invesigation, Ms
Q. Wu for the Au loading analysis, Ms J. Li for the measurement
of BET adsorption and Ms X. Wei for the NMR spectroscopic
investigation.
22 Y. Y. Yang and S. W. Chen, Nano Lett., 2003, 3, 75.
23 J. Zheng, J. T. Petty and R. M. Dickson, J. Am. Chem. Soc., 2003, 125,
7780.
24 S. F. J. Hackett, R. M. Brydson, M. H. Gass, I. Harvey, A. D.
Newman, K. Wilson and A. F. Lee, Angew. Chem., Int. Ed., 2007, 46,
8593.
25 J. M. Abad, I. E. Sendroiu, M. Gass, A. Bleloch, A. J. Mills and D. J.
Schiffrin, J. Am. Chem. Soc., 2007, 129, 12932.
26 A. Corma, H. Garcia, P. M. Navajas, A. Primo, J. J. Calvino and S.
Trasobares, Chem.–Eur. J., 2007, 13, 6359.
27 B. T. Qiao and Y. Q. Deng, Chem. Commun., 2003, 2192.
28 R. M. Finch, N. A. Hodge, G. J. Hutchings, A. Meagher, Q. A.
Pankhurst, M. R. H. Siddiqui, F. E. Wagner and R. Whyman, Phys.
Chem. Chem. Phys., 1999, 1, 485.
Notes and references
1 M. Valden, X. Lai and D. W. Goodman, Science, 1998, 281, 1647.
2 G. C. Bond and D. T. Thompson, Gold Bull., 2000, 33, 41.
3 M. C. Daniel and D. Astruc, Chem. Rev., 2004, 104, 293.
4 A. S. K. Hashmi and G. J. Hutchings, Angew. Chem., Int. Ed., 2006,
45, 7896.
5 D. Andreeva, V. Idakiev, T. Tabakova and A. Andreev, J. Catal., 1996,
158, 354.
6 L. Prati and M. Rossi, J. Catal., 1998, 176, 552; S. Carrettin, P.
McMorn, P. Johnston, K. Griffin and G. J. Hutchings, Chem. Commun.,
2002, 696.
29 P. Landon, J. Ferguson, B. E. Solsona, T. Garcia, A. F. Carlery, A. A.
Herzing, C. J. Kiely, S. E. Golunski and G. J. Hutchings, Chem.
Commun., 2005, 3385.
30 P. Landon, J. Ferguson, B. E. Solsona, T. Garcia, S. Al-Sayari, A. F.
Carlery, A. A. Herzing, C. J. Kiely, M. Makkee, J. A. Moulijn, A.
Overweg, S. E. Golunski and G. J. Hutchings, J. Mater. Chem., 2006,
16, 199.
31 K. Bauer and D. Garbe, Ullman Encyclopedia, Wiley-VCH, New York,
3rd edn, 1988, vol. A11, p. 141.
32 P. Claus, Top. Catal., 1998, 5, 51.
33 P. Kraft, J. A. Bajgrowicz, C. Denis and G. Frater, Angew. Chem., Int.
Ed., 2000, 39, 2980.
7 T. Hayashi, K. Tanaka and M. Haruta, J. Catal., 1998, 178, 566; M. D.
Hughes, Y. J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F.
Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston,
K. Griffin and C. J. Kiely, Nature, 2005, 437, 1132.
8 P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely and G. J. Hutchings,
Chem. Commun., 2002, 2058.
9 R. Zhao, D. Ji, G. Lu, G. Qian, L. Yan, X. Wang and J. Suo, Chem.
This journal is
The Royal Society of Chemistry 2008
Dalton Trans., 2008, 2542–2548 | 2547
©