Published on Web 11/24/2006
Allylic Nitro Compounds as Nitrite Donors
Harinath Chakrapani, Michael J. Gorczynski, and S. Bruce King*
Contribution from the Department of Chemistry, Wake Forest UniVersity, Winston-Salem, North
Carolina 27109
Abstract: Allylic nitro compounds were synthesized and evaluated as organic sources of nitrite and nitric
oxide. Unactivated allylic nitro compounds do not spontaneously release nitrite and nucleophile promoted
nitrite release is slow. However, 2-(nitromethyl)-cyclohex-1-ene-3-one spontaneously dissociates in buffer
-
5
-1
(
pH ) 7.4) to release nitrite with a kobs ) 1.6 × 10
s . In the presence of L-cysteine, this compound
rapidly yields nitrite and reacts with hemoglobin similarly to sodium nitrite. Structural modifications and the
nature and amount of nucleophile modulate the rate of nitrite release. In the presence of L-cysteine and
ascorbic acid, this compound forms nitric oxide. Together, these results reveal a new structural architecture
for the tunable liberation of nitrite and nitric oxide from organic compounds.
Introduction
For example, respiring mitochondria use ubiquinol to reduce
nitrite, while xanthine oxidoreductases, which are structurally
Nitrite has long been considered a physiologically inert
byproduct of nitric oxide (NO) oxidation. However, recent
studies suggest that nitrite plays a crucial role in NO-mediated
hypoxic vasodilation, cytoprotection from cardiac and liver
ischemia-reperfusion injury, and gene expression.1-5 The re-
quirement of oxygen for normal functioning of nitric oxide
synthase renders this enzyme ineffective at low oxygen tension,
and nitrite may assume a role as an important hypoxic source
of NO. Deoxyhemoglobin (deoxyHb) reacts with nitrite to
generate iron nitrosyl hemoglobin (HbFe(II)-NO) and meth-
similar to bacterial nitrate and nitrite reductases, catalyze nitrite
reduction to nitric oxide in the presence of NADH.17 Mild
biochemical reductants such as ascorbate, 1,2- and 1,4-dihy-
droxyphenols, and R-tocopherol mediate nitric oxide formation
18
from nitrite. Physiological sources of nitrite include the normal
diet, which contains sizable quantities (0.7-181 mg/day) and
spontaneous auto-oxidation of endogenously produced nitric
1
9
oxide (minor). Furthermore, the intriguing biochemistry of
nitrate has emerged, where the body actively concentrates this
simple anion for its conversion to nitrite (via commensal bacteria
emoglobin (metHb, HbFe(III)), essentially functioning as a
20
competent reductant of nitrite to nitric oxide.6
-10
in the mouth) and ultimately NO in the stomach. Hence, nitrite
represents a major intravascular storage pool of NO and plays
a pivotal role in nitric oxide biology.
Hemoglobin
(Hb) may also react with low concentrations of nitrite to generate
S-nitrosothiols, another possible mechanism for the maintenance
of normal vascular tone.1
1,12
Nitrite has been proposed as a potential therapeutic in the
treatment of various diseases, including neonatal pulmonary
hypertension, subarachnoid hemorrhage associated with vasos-
pasm, and sickle cell disease underscoring the importance of
Additionally, numerous hypoxic
reduction pathways exist for the conversion of nitrite to NO
mediated by several heme- and thiol-containing enzymes.
1
3-16
2
1,22
(
1) Gladwin, M. T. Nat. Chem. Biol. 2005, 1, 308-314.
exogenous sources of nitrite.
The use of inorganic nitrites
(
2) Dejam, A.; Hunter, C. J.; Schecheter, A. N.; Gladwin, M. T. Blood Cells
Mol. Dis. 2004, 32, 423-429.
precludes both controlled delivery and regulation of nitrite
bioavailability, and these drawbacks may limit its utility as a
therapy. We propose the use of allylic nitro compounds as
organic sources of nitrite as an initial strategy to solve the
(
3) Bryan, N. S.; Fernandez, B. O.; Bauer, S. M.; Garcia-Saura, M. F.; Milsom,
A. B.; Rassaf, T.; Maloney, R. E.; Bharti, A.; Rodriguez, J.; Feelisch, M.
Nat. Chem. Biol. 2005, 1, 290-297.
(
4) Webb, A.; Bond, R.; Mclean, P.; Uppal, R.; Benjamin, N.; Ahluwalia, A.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 13683-13688.
5) Duranski, M.; Greer, J.; Dejam, A.; Jaganmohan, S.; Hogg, N.; Langston,
W.; Patel, R.; Yet, S.; Wang, X.; Kevil, C.; Gladwin, M.; Lefer, D. J.
Clin. InVest. 2005, 115, 1232-1240.
(
(14) Benjamin, N.; O’Driscoll, F.; Dougall, H.; Duncan, C.; Smith, L.; Golden,
M.; Mckenzie, H. Nature 1994, 370, 25-26.
(15) Li, H.; Samouilov, A.; Liu, X.; Zweier, J. L. J. Biol. Chem. 2004, 279,
16939-16946.
(
6) Kim-Shapiro, D. B.; Gladwin, M. T.; Patel, R. P.; Hogg, N. J. Inorg.
Biochem. 2005, 99, 237-246.
(16) Kozlov, A. V.; Staniek, K.; Nohl, H. FEBS Lett. 1999, 454, 127-130.
(17) Gangolli, S. D.; Van, Der, Brandt, P. A.; Feron, V. J.; Janowsky, C.;
Koeman, J. H.; Speijers, G. J.; Spiegelhalder, B.; Walker, R.; Wisnok, J.
S. Eur. J. Pharmacol. 1994, 292, 1-38.
(
(
(
7) Cosby, K. Nat. Med. 2003, 12, 1498-1505.
8) Brooks, J. Proc. Royal Soc. B 1937, 123, 368-382.
9) Doyle, M. P.; Pickering, R. A.; Deweert, T. M.; Hoekstra, J. W.; Pater, D.
J. Biol. Chem. 1981, 256, 12393-12398.
(18) Bartsch, H.; Ohshima, H.; Pignatelli, B. Mutat. Res. 1988, 202, 307-324.
(19) Sies, H.; Sharov, V. S.; Klotz, L. O.; Briviba, K. J. Biol. Chem. 1997, 272,
27812-27817.
(
10) Huang, Z.; Shiva, S.; Kim-Shapiro, D.; Patel, R.; Ringwood, L.; Irby, C.;
Huang, K.; Ho, C.; Hogg, N.; Schechter, A.; Gladwin, M. J. Clin. InVest.
2
005, 115, 2099-2107.
(20) Lundberg, J. O.; Weitzberg, E.; Cole, J. A.; Benjamin, N. Nat. ReV.
Microbiol. 2004, 2, 593-602.
(
(
(
11) Nagababu, E.; Ramasamy, S.; Rifkind, J. M. Nitric Oxide Biol. Chem. 2006,
5, 20-29.
12) Angelo, M.; Singel, D. J.; Stamler, J. S. Proc. Natl. Acad. Sci. U.S.A. 2006,
03, 8366-8371.
13) Lundberg, J. O.; Weitzberg, E.; Lundberg, J. M.; Alving, K. Gut 1994, 35,
543-1546.
1
(21) Pluta, R. M.; Dejam, A.; Grimes, G.; Gladwin, M. T.; Oldfield, E. H. J.
Am. Med. Assoc. 2005, 293, 1477-1484.
1
(22) Hunter, C. J.; Dejam, A.; Blood, A. B.; Shields, H.; Kim-Shapiro, D. B.;
Machado, R. F.; Tarekegn, S.; Mulla, N.; Hopper, A. O.; Schecheter, A.
N.; Power, G. G.; Gladwin, M. T. Nat. Med. 2004, 10, 1122-1127.
1
1
6332 J. AM. CHEM. SOC. 2006, 128, 16332-16337
9
10.1021/ja066011v CCC: $33.50 © 2006 American Chemical Society